The equilibrium of copper-catalyzed atom transfer radical polymerization was investigated in silico with the aim of finding an explanation for the experimentally observed solvent effect. Various combinations of alkyl halide initiators and copper complexes in acetonitrile (MeCN) and dimethyl sulfoxide (DMSO) were taken into consideration. A continuum model for solvation, which does not account for the explicit interactions between the solvent and metal complex, is not adequate and does not allow the reproduction of the experimental trend. However, when the solvent molecules are included in the coordination sphere of the copper(I,II) species and the continuum description of the medium is still used, a solvent dependence of process thermodynamics emerges, in fair agreement with experimental trends.

Solvent Coordination Effect on Copper-Based Molecular Catalysts for Controlled Radical Polymerization

Orian, L
;
Tubaro, C;Isse, AA
2022

Abstract

The equilibrium of copper-catalyzed atom transfer radical polymerization was investigated in silico with the aim of finding an explanation for the experimentally observed solvent effect. Various combinations of alkyl halide initiators and copper complexes in acetonitrile (MeCN) and dimethyl sulfoxide (DMSO) were taken into consideration. A continuum model for solvation, which does not account for the explicit interactions between the solvent and metal complex, is not adequate and does not allow the reproduction of the experimental trend. However, when the solvent molecules are included in the coordination sphere of the copper(I,II) species and the continuum description of the medium is still used, a solvent dependence of process thermodynamics emerges, in fair agreement with experimental trends.
2022
File in questo prodotto:
File Dimensione Formato  
catalysts-12-01656.pdf

accesso aperto

Tipologia: Published (Publisher's Version of Record)
Licenza: Creative commons
Dimensione 1.19 MB
Formato Adobe PDF
1.19 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3468805
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
  • OpenAlex ND
social impact