: The molecular and phenotypic effects of a brown seaweed extract (BSE) were assessed in sugar beet (Beta vulgaris L.). Transcript levels of BSE-treated and untreated plants were studied by RNA-seq and validated by quantitative real-time PCR analysis (RT-qPCR). Root morphology, sugar yield, and processing quality traits were also analyzed to better elucidate the treatment effects. RNA-seq revealed 1019 differentially expressed genes (DEGs) between the BSE-treated and untreated plants. An adjusted p-value < 0.1 and an absolute value of log2 (fold change) greater than one was used as criteria to select the DEGs. Gene ontology (GO) identified hormone pathways as an enriched biological process. Six DEGs involved in auxin and ABA pathways were validated using RT-qPCR. The phenotypic characterization indicated that BSE treatment led to a significant increase (p < 0.05) in total root length and the length of fine roots of plants grown under hydroponics conditions. The sugar yield of plants grown under field conditions was higher (p < 0.05) in the treated field plots compared with the control treatment, without impacting the processing quality. Our study unveiled the relevant effects of BSE application in regulating auxin- and ABA-related gene expression and critical traits related to sugar beet development and yield.

Brown Seaweed Extract (BSE) Application Influences Auxin- and ABA-Related Gene Expression, Root Development, and Sugar Yield in Beta vulgaris L

Bertoldo, Giovanni;Chiodi, Claudia;Della Lucia, Maria Cristina;Borella, Matteo;Ravi, Samathmika;Ganasula, Bhargava Krishna;Mulagala, Chandana;Squartini, Andrea;Concheri, Giuseppe;Stevanato, Piergiorgio;Nardi, Serenella
2023

Abstract

: The molecular and phenotypic effects of a brown seaweed extract (BSE) were assessed in sugar beet (Beta vulgaris L.). Transcript levels of BSE-treated and untreated plants were studied by RNA-seq and validated by quantitative real-time PCR analysis (RT-qPCR). Root morphology, sugar yield, and processing quality traits were also analyzed to better elucidate the treatment effects. RNA-seq revealed 1019 differentially expressed genes (DEGs) between the BSE-treated and untreated plants. An adjusted p-value < 0.1 and an absolute value of log2 (fold change) greater than one was used as criteria to select the DEGs. Gene ontology (GO) identified hormone pathways as an enriched biological process. Six DEGs involved in auxin and ABA pathways were validated using RT-qPCR. The phenotypic characterization indicated that BSE treatment led to a significant increase (p < 0.05) in total root length and the length of fine roots of plants grown under hydroponics conditions. The sugar yield of plants grown under field conditions was higher (p < 0.05) in the treated field plots compared with the control treatment, without impacting the processing quality. Our study unveiled the relevant effects of BSE application in regulating auxin- and ABA-related gene expression and critical traits related to sugar beet development and yield.
2023
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3470221
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 1
social impact