: Heterostructures of Ga[Formula: see text]O[Formula: see text] with other materials such as Si, SiC or diamond, are a possible way of addressing the low thermal conductivity and lack of p-type doping of Ga[Formula: see text]O[Formula: see text] for device applications, as well as of improving device reliability. In this work we study the electrical and thermal properties of Ga[Formula: see text]O[Formula: see text]-SiO[Formula: see text] heterostructures. Here, thin-film gallium oxide with thickness ranging between 8 and 30 nm was deposited onto a silicon substrate with a thermal oxide by means of oxidised liquid gallium layer delamination. The resulting heterostructure is then characterised by means of X-ray photoelectron spectroscopy and transient thermoreflectance. The thin-film gallium oxide valence band offset with respect to the SiO[Formula: see text] is measured as 0.1 eV and predicted as [Formula: see text] eV with respect to diamond. The thin-film's out-of-plane thermal conductivity is determined to be 3 ±0.5 Wm[Formula: see text] K[Formula: see text], which is higher than what has been previously measured for other polycrystalline Ga[Formula: see text]O[Formula: see text] films of comparable thickness.

Electrical and thermal characterisation of liquid metal thin-film Ga[Formula: see text]O[Formula: see text]-SiO[Formula: see text] heterostructures

Cattelan, Mattia;
2023

Abstract

: Heterostructures of Ga[Formula: see text]O[Formula: see text] with other materials such as Si, SiC or diamond, are a possible way of addressing the low thermal conductivity and lack of p-type doping of Ga[Formula: see text]O[Formula: see text] for device applications, as well as of improving device reliability. In this work we study the electrical and thermal properties of Ga[Formula: see text]O[Formula: see text]-SiO[Formula: see text] heterostructures. Here, thin-film gallium oxide with thickness ranging between 8 and 30 nm was deposited onto a silicon substrate with a thermal oxide by means of oxidised liquid gallium layer delamination. The resulting heterostructure is then characterised by means of X-ray photoelectron spectroscopy and transient thermoreflectance. The thin-film gallium oxide valence band offset with respect to the SiO[Formula: see text] is measured as 0.1 eV and predicted as [Formula: see text] eV with respect to diamond. The thin-film's out-of-plane thermal conductivity is determined to be 3 ±0.5 Wm[Formula: see text] K[Formula: see text], which is higher than what has been previously measured for other polycrystalline Ga[Formula: see text]O[Formula: see text] films of comparable thickness.
2023
File in questo prodotto:
File Dimensione Formato  
s41598-023-30638-4.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 2.16 MB
Formato Adobe PDF
2.16 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3470615
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact