We report the synthesis and electron donor–acceptor features of a novel nanohybrid, in which the light-harvesting and electron-donating properties of a meso-tetraarylporphyrin (TArP) are combined with the electron-accepting features of nitrogen-doped carbon nanodots (NCNDs). In particular, in an ultrafast process (>1012 s−1), visible-light excitation transforms the strongly quenched porphyrin singlet excited states into short-lived (225 ps) charge-separated states. On the other hand, ultraviolet light excitation triggers a non-resolvable transduction of singlet excited state energy from the NCNDs to the porphyrins, followed by the same charge separation observed upon visible light excitation.
Porphyrin Antennas on Carbon Nanodots: Excited State Energy and Electron Transduction
Arcudi F.;Dordevic L.;Prato M.
2017
Abstract
We report the synthesis and electron donor–acceptor features of a novel nanohybrid, in which the light-harvesting and electron-donating properties of a meso-tetraarylporphyrin (TArP) are combined with the electron-accepting features of nitrogen-doped carbon nanodots (NCNDs). In particular, in an ultrafast process (>1012 s−1), visible-light excitation transforms the strongly quenched porphyrin singlet excited states into short-lived (225 ps) charge-separated states. On the other hand, ultraviolet light excitation triggers a non-resolvable transduction of singlet excited state energy from the NCNDs to the porphyrins, followed by the same charge separation observed upon visible light excitation.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.