Protection of enzymes with synthetic materials is a viable strategy to stabilize, and hence to retain, the reactivity of these highly active biomolecules in non-native environments. Active synthetic supports, coupled to encapsulated enzymes, can enable efficient cascade reactions which are necessary for processes like light-driven CO2 reduction, providing a promising pathway for alternative energy generation. Herein, a semi-artificial system - containing an immobilized enzyme, formate dehydrogenase, in a light harvesting scaffold - is reported for the conversion of CO2 to formic acid using white light. The electron-mediator Cp*Rh(2,2′-bipyridyl-5,5′-dicarboxylic acid)Cl was anchored to the nodes of the metal-organic framework NU-1006 to facilitate ultrafast photo-induced electron transfer when irradiated, leading to the reduction of the coenzyme nicotinamide adenine dinucleotide at a rate of about 28 mM·h-1. Most importantly, the immobilized enzyme utilizes the reduced coenzyme to generate formic acid selectively from CO2 at a high turnover frequency of about 865 h-1 in 24 h. The outcome of this research is the demonstration of a feasible pathway for solar-driven carbon fixation.
Integration of Enzymes and Photosensitizers in a Hierarchical Mesoporous Metal-Organic Framework for Light-Driven CO2 Reduction
Dordevic L.;
2020
Abstract
Protection of enzymes with synthetic materials is a viable strategy to stabilize, and hence to retain, the reactivity of these highly active biomolecules in non-native environments. Active synthetic supports, coupled to encapsulated enzymes, can enable efficient cascade reactions which are necessary for processes like light-driven CO2 reduction, providing a promising pathway for alternative energy generation. Herein, a semi-artificial system - containing an immobilized enzyme, formate dehydrogenase, in a light harvesting scaffold - is reported for the conversion of CO2 to formic acid using white light. The electron-mediator Cp*Rh(2,2′-bipyridyl-5,5′-dicarboxylic acid)Cl was anchored to the nodes of the metal-organic framework NU-1006 to facilitate ultrafast photo-induced electron transfer when irradiated, leading to the reduction of the coenzyme nicotinamide adenine dinucleotide at a rate of about 28 mM·h-1. Most importantly, the immobilized enzyme utilizes the reduced coenzyme to generate formic acid selectively from CO2 at a high turnover frequency of about 865 h-1 in 24 h. The outcome of this research is the demonstration of a feasible pathway for solar-driven carbon fixation.| File | Dimensione | Formato | |
|---|---|---|---|
|
chen-et-al-2020-integration-of-enzymes-and-photosensitizers-in-a-hierarchical-mesoporous-metal-organic-framework-for.pdf
Accesso riservato
Tipologia:
Published (Publisher's Version of Record)
Licenza:
Accesso privato - non pubblico
Dimensione
2.01 MB
Formato
Adobe PDF
|
2.01 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
|
aamc.pdf
accesso aperto
Tipologia:
Accepted (AAM - Author's Accepted Manuscript)
Licenza:
Accesso libero
Dimensione
1.23 MB
Formato
Adobe PDF
|
1.23 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




