The lowermost mantle of the Earth is characterized by seismic structures that range from a few tens to thousands of kilometers. At present, it is difficult to test hypotheses put forward to explain seismic observations due to poor seismic coverage, as particular earthquake-station geometries are needed. We demonstrate here that seismic noise correlations can be used to robustly image deep-mantle reflections with larger stacked amplitudes of reflected waves compared with earthquake data. In a comparison between noise and earthquake data, we find that the arrival times and the slowness of reflected waves, both sampling a region beneath Siberia, agree with those for a reflector at 2530 km depth, and the small amplitude reflections are sufficiently clear in the noise correlations to compare them reliably with synthetic data. Our data open exciting prospects for illuminating new target zones in the deep mantle to further constrain the dynamics and mineralogy of the deep Earth. Key Points Imaging deep Earth without sources Agreement of the results with earthquake-based method High-resolution imaging of the core-mantle boundary region

Imaging the D″ reflector with noise correlations

Poli P.;
2015

Abstract

The lowermost mantle of the Earth is characterized by seismic structures that range from a few tens to thousands of kilometers. At present, it is difficult to test hypotheses put forward to explain seismic observations due to poor seismic coverage, as particular earthquake-station geometries are needed. We demonstrate here that seismic noise correlations can be used to robustly image deep-mantle reflections with larger stacked amplitudes of reflected waves compared with earthquake data. In a comparison between noise and earthquake data, we find that the arrival times and the slowness of reflected waves, both sampling a region beneath Siberia, agree with those for a reflector at 2530 km depth, and the small amplitude reflections are sufficiently clear in the noise correlations to compare them reliably with synthetic data. Our data open exciting prospects for illuminating new target zones in the deep mantle to further constrain the dynamics and mineralogy of the deep Earth. Key Points Imaging deep Earth without sources Agreement of the results with earthquake-based method High-resolution imaging of the core-mantle boundary region
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3471049
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? ND
social impact