SUMMARY We investigate the variations of the seismic source properties and aftershock activity using kinematic inversions and template-matching for six large magnitude intermediate-depth earthquakes occurred in northern Chile. Results show similar rupture geometry and stress drop values between 7 and 30 MPa. Conversely, aftershock productivity systematically decreases for the deeper events within the slab. Particularly, there is a dramatic decrease in aftershock activity below the 400–450 °C isotherm depth, which separates high- and low-hydrated zones. The events exhibit tensional focal mechanisms at unexpected depths within the slab, suggesting a deepening of the neutral plane, where the extensional regimen reaches the 700–800 °C isotherm depth. We interpret the reduction of aftershocks in the lower part of the extensional regime as the absence of a hydrated-slab at those depths. Our finding highlights the role of the thermal structure and fluids in the subducting plate in controlling the intermediated-depth seismic activity and shed new light in their causative mechanism.

{Northern Chile intermediate-depth earthquakes controlled by plate hydration}

Poli, Piero;
2021

Abstract

SUMMARY We investigate the variations of the seismic source properties and aftershock activity using kinematic inversions and template-matching for six large magnitude intermediate-depth earthquakes occurred in northern Chile. Results show similar rupture geometry and stress drop values between 7 and 30 MPa. Conversely, aftershock productivity systematically decreases for the deeper events within the slab. Particularly, there is a dramatic decrease in aftershock activity below the 400–450 °C isotherm depth, which separates high- and low-hydrated zones. The events exhibit tensional focal mechanisms at unexpected depths within the slab, suggesting a deepening of the neutral plane, where the extensional regimen reaches the 700–800 °C isotherm depth. We interpret the reduction of aftershocks in the lower part of the extensional regime as the absence of a hydrated-slab at those depths. Our finding highlights the role of the thermal structure and fluids in the subducting plate in controlling the intermediated-depth seismic activity and shed new light in their causative mechanism.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3471058
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 22
  • OpenAlex ND
social impact