When pedaling, the excessive pressure on the seat has the potential to produce injuries and this can strongly affect sport performance. Recently, a large effort has been dedicated to the reduction of the pressure occurring at the saddle region. Our work aims to verify the possibility of modifying cyclists’ pedaling posture, and consequently the pressure on the saddle, by applying a proprioceptive stimulus. Equistasi® (Equistasi srl, Milano, Italy) is a wearable device that emits focal mechanical vibrations able to transform the body temperature into mechanical vibratory energy via the embedded nanotechnology. The data acquired through a pressure mapping system (GebioMized®) on 70 cyclists, with and without Equistasi®, were analyzed. Pedaling in three positions was recorded on a spin trainer: with hands on the top, hands on the drop handlebar, and hands on the lever. Average force, contact surface, and average and maximum pressure each in different regions of the saddle were analyzed, as well as integral pressure time and center of pressure. In the comparisons between hands positions, overall pressure and force variables were significantly lower in the drop-handlebar position at the rear saddle (p < 0.03) and higher in hand-on-lever and drop-handlebar positions at the front saddle (p < 0.01). When applying the Equistasi device, the contact surface was significantly larger in all hand positions (p < 0.05), suggesting that focal stimulation of the lumbar proprioceptive system can change cyclists’ posture.

Could Proprioceptive Stimuli Change Saddle Pressure on Male Cyclists during Different Hand Positions? An Exploratory Study of the Effect of the Equistasi® Device

Guiotto, Annamaria;Spolaor, Fabiola;Sawacha, Zimi
2022

Abstract

When pedaling, the excessive pressure on the seat has the potential to produce injuries and this can strongly affect sport performance. Recently, a large effort has been dedicated to the reduction of the pressure occurring at the saddle region. Our work aims to verify the possibility of modifying cyclists’ pedaling posture, and consequently the pressure on the saddle, by applying a proprioceptive stimulus. Equistasi® (Equistasi srl, Milano, Italy) is a wearable device that emits focal mechanical vibrations able to transform the body temperature into mechanical vibratory energy via the embedded nanotechnology. The data acquired through a pressure mapping system (GebioMized®) on 70 cyclists, with and without Equistasi®, were analyzed. Pedaling in three positions was recorded on a spin trainer: with hands on the top, hands on the drop handlebar, and hands on the lever. Average force, contact surface, and average and maximum pressure each in different regions of the saddle were analyzed, as well as integral pressure time and center of pressure. In the comparisons between hands positions, overall pressure and force variables were significantly lower in the drop-handlebar position at the rear saddle (p < 0.03) and higher in hand-on-lever and drop-handlebar positions at the front saddle (p < 0.01). When applying the Equistasi device, the contact surface was significantly larger in all hand positions (p < 0.05), suggesting that focal stimulation of the lumbar proprioceptive system can change cyclists’ posture.
2022
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3471257
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact