We provide monotonicity formulas for solutions to the p-Laplace equation defined in the exterior of a convex domain. A number of analytic and geometric consequences are derived, including the classical Minkowski inequality as well as new characterizations of rotationally symmetric solutions and domains. The proofs rely on the conformal splitting technique introduced by the second author in collaboration with V. Agostiniani.

Geometric aspects of p-capacitary potentials

Fogagnolo M.;
2019

Abstract

We provide monotonicity formulas for solutions to the p-Laplace equation defined in the exterior of a convex domain. A number of analytic and geometric consequences are derived, including the classical Minkowski inequality as well as new characterizations of rotationally symmetric solutions and domains. The proofs rely on the conformal splitting technique introduced by the second author in collaboration with V. Agostiniani.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3471678
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 15
social impact