The conjugation of small-molecule semiconductors with self-assembling peptides is a powerful tool for the fabrication of supramolecular soft materials for organic electronics and bioelectronics. Herein, we introduced the benchmark organic semiconductor [1]benzothieno[3,2-b][1]-benzothiophene (BTBT) within the structure of a self-assembling amphipathic peptide. The molecular structure of the conjugate was rationally designed to favour π-π stacking between BTBT cores and π-delocalization within the self-assembled architectures. Hydrogels with fibrillar structure were obtained upon self-assembly. Spectroscopic studies confirmed that both hydrogen bonding between peptide segments and π-π stacking between BTBT chromophores are responsible for the formation of the 3D fibrillar network observed by transmission electron microscopy. The hydrogel was successfully deposited on gold interdigitated electrodes and a conductivity up to 1.6 (±0.1) × 10−5 S cm−1 was measured.

Self-Assembly and Electrical Conductivity of a New [1]benzothieno[3,2-b][1]-benzothiophene (BTBT)-Peptide Hydrogel

Fortunato, Anna;Hensel, Rafael Cintra;Casalini, Stefano;Mba, Miriam
2023

Abstract

The conjugation of small-molecule semiconductors with self-assembling peptides is a powerful tool for the fabrication of supramolecular soft materials for organic electronics and bioelectronics. Herein, we introduced the benchmark organic semiconductor [1]benzothieno[3,2-b][1]-benzothiophene (BTBT) within the structure of a self-assembling amphipathic peptide. The molecular structure of the conjugate was rationally designed to favour π-π stacking between BTBT cores and π-delocalization within the self-assembled architectures. Hydrogels with fibrillar structure were obtained upon self-assembly. Spectroscopic studies confirmed that both hydrogen bonding between peptide segments and π-π stacking between BTBT chromophores are responsible for the formation of the 3D fibrillar network observed by transmission electron microscopy. The hydrogel was successfully deposited on gold interdigitated electrodes and a conductivity up to 1.6 (±0.1) × 10−5 S cm−1 was measured.
2023
File in questo prodotto:
File Dimensione Formato  
molecules-28-02917-with-cover.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 1.96 MB
Formato Adobe PDF
1.96 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3472882
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 1
social impact