Colloidal quantum dot (QD) photocatalysts have the electrochemical and optical properties to be highly effective for a range of redox reactions. QDs are proven photo-redox catalysts for a variety of reactions in organic solvents but are less prominent for aqueous reactions. Aqueous QD photocatalysts require hydrophilic ligand shells that provide long-term colloidal stability but are not so tight-binding as to prevent catalytic substrates from accessing the QD surface. Common thiolate ligands, which also poison many co-catalysts and undergo photo-oxidative desorption, are therefore often not an option. This paper describes a framework for the design of water-solubilizing ligands that are in dynamic exchange on and off the QD surface, but still provide long-term colloidal stability to CdS QDs. The binding affinity and inter-ligand electrostatic interactions of a bifunctional ligand, aminoethyl phosphonic acid (AEP), are tuned with the pH of the dispersion. The key to colloidal stability is electrostatic stabilization of the monolayer. This work demonstrates a means of mimicking the stabilizing power of a thiolate-bound ligand with a zwitterionic tail group, but without the thiolate binding group.

Colloidally Stable CdS Quantum Dots in Water with Electrostatically Stabilized Weak-Binding, Sulfur-Free Ligands

Arcudi F.;
2019

Abstract

Colloidal quantum dot (QD) photocatalysts have the electrochemical and optical properties to be highly effective for a range of redox reactions. QDs are proven photo-redox catalysts for a variety of reactions in organic solvents but are less prominent for aqueous reactions. Aqueous QD photocatalysts require hydrophilic ligand shells that provide long-term colloidal stability but are not so tight-binding as to prevent catalytic substrates from accessing the QD surface. Common thiolate ligands, which also poison many co-catalysts and undergo photo-oxidative desorption, are therefore often not an option. This paper describes a framework for the design of water-solubilizing ligands that are in dynamic exchange on and off the QD surface, but still provide long-term colloidal stability to CdS QDs. The binding affinity and inter-ligand electrostatic interactions of a bifunctional ligand, aminoethyl phosphonic acid (AEP), are tuned with the pH of the dispersion. The key to colloidal stability is electrostatic stabilization of the monolayer. This work demonstrates a means of mimicking the stabilizing power of a thiolate-bound ligand with a zwitterionic tail group, but without the thiolate binding group.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3473968
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 6
social impact