The small-scale topography of surfaces critically affects the contact area of solids and thus the forces acting between them. Although this has long been known, only recent advances made it possible to reliably model interfacial forces and related quantities for surfaces with multiscale roughness. This article sketches both recent and traditional approaches to their mechanics, while addressing the relevance of nonlinearity and nonlocality arising in soft- and hard-matter contacts.

Modeling the surface topography dependence of friction, adhesion, and contact compliance

Nicola, Lucia
2022

Abstract

The small-scale topography of surfaces critically affects the contact area of solids and thus the forces acting between them. Although this has long been known, only recent advances made it possible to reliably model interfacial forces and related quantities for surfaces with multiscale roughness. This article sketches both recent and traditional approaches to their mechanics, while addressing the relevance of nonlinearity and nonlocality arising in soft- and hard-matter contacts.
2022
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3478672
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact