We investigate the link between the bar rotation rate and dark matter content in barred galaxies by concentrating on the cases of the lenticular galaxies NGC 4264 and NGC 4277. These two gas-poor galaxies have similar morphologies, sizes, and luminosities. But, NGC 4264 hosts a fast bar, which extends to nearly the corotation, while the bar embedded in NGC 4277 is slow and falls short of corotation. We derive the fraction of dark matter f_DM, bar within the bar region from Jeans axisymmetric dynamical models by matching the stellar kinematics obtained with the MUSE integral-field spectrograph and using SDSS images to recover the stellar mass distribution. We build mass-follows-light models as well as mass models with a spherical halo of dark matter, which is not tied to the stars. We find that the inner regions of NGC 4277 host a larger fraction of dark matter ( f_DM,bar=0.53±0.02) with respect to NGC 4264 ( f_DM,bar=0.33±0.04) in agreement with the predictions of theoretical works and the findings of numerical simulations, which have found that fast bars live in baryon-dominated discs, whereas slow bars experienced a strong drag from the dynamical friction due to a dense DM halo. This is the first time that the bar rotation rate is coupled to fDM, bar derived from dynamical modelling.

The bar rotation rate as a diagnostic of dark matter content in the centre of disc galaxies

Buttitta, C
;
Corsini, E M;Pizzella, A
2023

Abstract

We investigate the link between the bar rotation rate and dark matter content in barred galaxies by concentrating on the cases of the lenticular galaxies NGC 4264 and NGC 4277. These two gas-poor galaxies have similar morphologies, sizes, and luminosities. But, NGC 4264 hosts a fast bar, which extends to nearly the corotation, while the bar embedded in NGC 4277 is slow and falls short of corotation. We derive the fraction of dark matter f_DM, bar within the bar region from Jeans axisymmetric dynamical models by matching the stellar kinematics obtained with the MUSE integral-field spectrograph and using SDSS images to recover the stellar mass distribution. We build mass-follows-light models as well as mass models with a spherical halo of dark matter, which is not tied to the stars. We find that the inner regions of NGC 4277 host a larger fraction of dark matter ( f_DM,bar=0.53±0.02) with respect to NGC 4264 ( f_DM,bar=0.33±0.04) in agreement with the predictions of theoretical works and the findings of numerical simulations, which have found that fast bars live in baryon-dominated discs, whereas slow bars experienced a strong drag from the dynamical friction due to a dense DM halo. This is the first time that the bar rotation rate is coupled to fDM, bar derived from dynamical modelling.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3479595
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact