We present a wafer-scale fabricated, PDMS-based platform for culturing miniaturized engineered heart tissues (EHTs) which allows highly accurate measurements of the contractile properties of these tissues. The design of the platform is an anisometrically downscaled version of the Heart-Dyno system, consisting of two elastic micropillars inside an elliptic microwell with volume ranging from 3 down to 1 mu L which supports EHT formation. Size downscaling facilitates fabrication of the platform and makes it compatible with accurate and highly reproducible batch wafer-scale processing; furthermore, downscaling reduces the cost of cell cultures and increases assay throughput. After fabrication, the devices were characterized by nanoindentation to assess the mechanical properties of the pillars and transferred to 96-well plates for cell seeding. Regardless the size of the platform, cell seeding resulted in successful formation of EHTs and all tissues were functionally active (i.e. showed cyclic contractions). The precise characterization of the stiffness of the micropillars enabled accurate measurements of the contractile forces exerted by the cardiac tissues through optical tracking of micropillar displacement. The miniature EHT platforms described in this paper represent a proper microenvironment for culturing and studying EHTs. [2020-0130]

A Miniaturized EHT Platform for Accurate Measurements of Tissue Contractile Properties

Bellin M.;
2020

Abstract

We present a wafer-scale fabricated, PDMS-based platform for culturing miniaturized engineered heart tissues (EHTs) which allows highly accurate measurements of the contractile properties of these tissues. The design of the platform is an anisometrically downscaled version of the Heart-Dyno system, consisting of two elastic micropillars inside an elliptic microwell with volume ranging from 3 down to 1 mu L which supports EHT formation. Size downscaling facilitates fabrication of the platform and makes it compatible with accurate and highly reproducible batch wafer-scale processing; furthermore, downscaling reduces the cost of cell cultures and increases assay throughput. After fabrication, the devices were characterized by nanoindentation to assess the mechanical properties of the pillars and transferred to 96-well plates for cell seeding. Regardless the size of the platform, cell seeding resulted in successful formation of EHTs and all tissues were functionally active (i.e. showed cyclic contractions). The precise characterization of the stiffness of the micropillars enabled accurate measurements of the contractile forces exerted by the cardiac tissues through optical tracking of micropillar displacement. The miniature EHT platforms described in this paper represent a proper microenvironment for culturing and studying EHTs. [2020-0130]
File in questo prodotto:
File Dimensione Formato  
Dostanic_et_al_JMicroelectromechSystems_2020.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 5.37 MB
Formato Adobe PDF
5.37 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3479738
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 24
social impact