Quantum-rotor-induced polarisation (QRIP) enhancement is exhibited by substances which contain freely rotating methyl groups in the solid state, provided that the methyl groups contain a 13C nucleus. Strong signal enhancements are observed in solution NMR when the material is first equilibrated at cryogenic temperatures, then rapidly dissolved with a warm solvent and transferred into an NMR magnet. QRIP leads to strongly-enhanced 13C NMR signals, but relatively weak enhancements of the 1H signals. We show that the 1H signals suffer from a partial cancellation of degenerate contributions, which may be corrected by applying a frequency-selective π pulse to the inner peaks of the 13C multiplet prior to 1H observation.
Enhancement of quantum rotor NMR signals by frequency-selective pulses
Stevanato G.;
2015
Abstract
Quantum-rotor-induced polarisation (QRIP) enhancement is exhibited by substances which contain freely rotating methyl groups in the solid state, provided that the methyl groups contain a 13C nucleus. Strong signal enhancements are observed in solution NMR when the material is first equilibrated at cryogenic temperatures, then rapidly dissolved with a warm solvent and transferred into an NMR magnet. QRIP leads to strongly-enhanced 13C NMR signals, but relatively weak enhancements of the 1H signals. We show that the 1H signals suffer from a partial cancellation of degenerate contributions, which may be corrected by applying a frequency-selective π pulse to the inner peaks of the 13C multiplet prior to 1H observation.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.