The typical linewidths of 1H NMR spectra of powdered organic solids at 111 kHz magic-angle spinning (MAS) are of the order of a few hundred Hz. While this is remarkable in comparison to the tens of kHz observed in spectra of static samples, it is still the key limit to the use of 1H in solid-state NMR, especially for complex systems. Here, we demonstrate a novel strategy to further improve the spectral resolution. We show that the anti-z-COSY experiment can be used to reduce the residual line broadening of 1H NMR spectra of powdered organic solids. Results obtained with the anti-z-COSY sequence at 100 kHz MAS on thymol, β-AspAla, and strychnine show an improvement in resolution of up to a factor of two compared to conventional spectra acquired at the same spinning rate.

Homonuclear Decoupling in 1H NMR of Solids by Remote Correlation

Stevanato G.;
2020

Abstract

The typical linewidths of 1H NMR spectra of powdered organic solids at 111 kHz magic-angle spinning (MAS) are of the order of a few hundred Hz. While this is remarkable in comparison to the tens of kHz observed in spectra of static samples, it is still the key limit to the use of 1H in solid-state NMR, especially for complex systems. Here, we demonstrate a novel strategy to further improve the spectral resolution. We show that the anti-z-COSY experiment can be used to reduce the residual line broadening of 1H NMR spectra of powdered organic solids. Results obtained with the anti-z-COSY sequence at 100 kHz MAS on thymol, β-AspAla, and strychnine show an improvement in resolution of up to a factor of two compared to conventional spectra acquired at the same spinning rate.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3480720
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 16
social impact