Shear and bulk viscosities of liquid water and argon are evaluated from first-principles in the density functional theory (DFT) framework, by performing molecular dynamics simulations in the NVE ensemble and using the Kubo-Greenwood equilibrium approach. The standard DFT functional is corrected in such a way to allow for a reasonable description of van der Waals effects. For liquid argon, the thermal conductivity has been also calculated. Concerning liquid water, to our knowledge, this is the first estimate of the bulk viscosity and of the shear-viscosity/bulk-viscosity ratio from first-principles. By analyzing our results, we can conclude that our first-principles simulations, performed at a nominal average temperature of 366 to guarantee that the systems are liquid-like, actually describe the basic dynamical properties of liquid water at about 330 K. In comparison with liquid water, the normal, monatomic liquid Ar is characterized by a much smaller bulk-viscosity/shear-viscosity ratio (close to unity) and this feature is well reproduced by our first-principles approach, which predicts a value of the ratio in better agreement with experimental reference data than that obtained using the empirical Lennard-Jones potential. The computed thermal conductivity of liquid argon is also in good agreement with the experimental value.

Transport properties in liquids from first-principles: The case of liquid water and liquid argon

Silvestrelli, Pier Luigi
2023

Abstract

Shear and bulk viscosities of liquid water and argon are evaluated from first-principles in the density functional theory (DFT) framework, by performing molecular dynamics simulations in the NVE ensemble and using the Kubo-Greenwood equilibrium approach. The standard DFT functional is corrected in such a way to allow for a reasonable description of van der Waals effects. For liquid argon, the thermal conductivity has been also calculated. Concerning liquid water, to our knowledge, this is the first estimate of the bulk viscosity and of the shear-viscosity/bulk-viscosity ratio from first-principles. By analyzing our results, we can conclude that our first-principles simulations, performed at a nominal average temperature of 366 to guarantee that the systems are liquid-like, actually describe the basic dynamical properties of liquid water at about 330 K. In comparison with liquid water, the normal, monatomic liquid Ar is characterized by a much smaller bulk-viscosity/shear-viscosity ratio (close to unity) and this feature is well reproduced by our first-principles approach, which predicts a value of the ratio in better agreement with experimental reference data than that obtained using the empirical Lennard-Jones potential. The computed thermal conductivity of liquid argon is also in good agreement with the experimental value.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3481861
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact