Due to a very low production rate of electron anti-neutrinos (ν̄e) via nuclear fusion in the Sun, a flux of solar ν̄e is unexpected. An appearance of ν̄e in solar neutrino flux opens a new window for the new physics beyond the standard model. In particular, a spin-flavor precession process is expected to convert an electron neutrino into an electron anti-neutrino (νe→ν̄e) when neutrino has a finite magnetic moment. In this work, we have searched for solar ν̄e in the Super-Kamiokande experiment, using neutron tagging to identify their inverse beta decay signature. We identified 78 ν̄e candidates for neutrino energies of 9.3 to 17.3 MeV in 2970.1 live days with a fiducial volume of 22.5 kiloton water (183.0 kton⋅year exposure). The energy spectrum has been consistent with background predictions and we thus derived a 90% confidence level upper limit of 4.7×10−4 on the νe→ν̄e conversion probability in the Sun. We used this result to evaluate the sensitivity of future experiments, notably the Super-Kamiokande Gadolinium (SK-Gd) upgrade.

Search for solar electron anti-neutrinos due to spin-flavor precession in the Sun with Super-Kamiokande-IV

Collazuol G.
Supervision
;
Iacob F.
Methodology
;
Ali A.
Methodology
;
2022

Abstract

Due to a very low production rate of electron anti-neutrinos (ν̄e) via nuclear fusion in the Sun, a flux of solar ν̄e is unexpected. An appearance of ν̄e in solar neutrino flux opens a new window for the new physics beyond the standard model. In particular, a spin-flavor precession process is expected to convert an electron neutrino into an electron anti-neutrino (νe→ν̄e) when neutrino has a finite magnetic moment. In this work, we have searched for solar ν̄e in the Super-Kamiokande experiment, using neutron tagging to identify their inverse beta decay signature. We identified 78 ν̄e candidates for neutrino energies of 9.3 to 17.3 MeV in 2970.1 live days with a fiducial volume of 22.5 kiloton water (183.0 kton⋅year exposure). The energy spectrum has been consistent with background predictions and we thus derived a 90% confidence level upper limit of 4.7×10−4 on the νe→ν̄e conversion probability in the Sun. We used this result to evaluate the sensitivity of future experiments, notably the Super-Kamiokande Gadolinium (SK-Gd) upgrade.
File in questo prodotto:
File Dimensione Formato  
Ap Phys 139 (2022) 102702 - Search for solar electron anti-neutrinos due to spin-flavor precession in the Sun with Super-Kamiokande-IV - Collazuol in Super-Kamiokande.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 1.41 MB
Formato Adobe PDF
1.41 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3482102
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 6
  • OpenAlex ND
social impact