Hyaluronic acid (HA) is frequently formulated in eye drops to improve the stability of the tear film by hydration and lubrication. Mucoadhesion is related to the ocular residence time and therefore to the effectiveness of the eye drops. The ocular residence time of the HA formulation is correlated with the ability of HA to create specific strong interactions in the ocular surface with the mucus layer, mainly composed of a mixture of secreted mucins (MUC; gel forming MUC5AC and MUC2) and shed membrane-bound soluble mucins (MUC1, MUC4, and MUC16). Dry eye disease (DED) is a multifactorial pathology of the preocular tear film with possible damage to the ocular surface classified in two types: (1) aqueous-deficient dry eye and (2) evaporative dry eye, caused by a decrease in goblet cell density that reduces MUC expression and/or by meibomian gland dysfunction, that results in a drop in the lipidic fraction of the tear film.In this work, the binding affinity between HA and MUC2 has been evaluated with three complementary ap-proaches because the secreted MUCs play a pivotal role in the viscoelastic properties of the tear film: 1. Rheo-logical analysis, measuring the mucoadhesive index and the complex viscosity in relation to MM (Molecular Mass) and concentration; 2. Fluorescence analysis, using a fluorescent hydrophobic probe, to investigate the conformational change of MUC2 during the interaction with the HA polymer; 3. Surface plasmon resonance analysis, used to measure the affinity between MUC2 (immobilized on the surface of a sensor chip) and the HA polymers that flowed on it at the molecular level.For all these tests, the mucoadhesive performance of the natural HA linearly increases with the MM, whereas cross-linked HA and other emollient and gelling agents (formulated in artificial tears) do not show the same mucoadhesive properties (with the exception of xanthan gum). The mucoadhesive performance of high MM HA has also been confirmed in conditions that simulate the pathological condition of the tear film during DED by decreasing the MUC2 or oleic acid concentration. Physico-chemical analysis of a series of marketed artificial tears confirms the linear correlation between the MM of the HA used in the products and the mucoadhesive index measured on the ocular surface model.

The role of high molecular weight hyaluronic acid in mucoadhesion on an ocular surface model

Acquasaliente L.;Pasut G.;
2023

Abstract

Hyaluronic acid (HA) is frequently formulated in eye drops to improve the stability of the tear film by hydration and lubrication. Mucoadhesion is related to the ocular residence time and therefore to the effectiveness of the eye drops. The ocular residence time of the HA formulation is correlated with the ability of HA to create specific strong interactions in the ocular surface with the mucus layer, mainly composed of a mixture of secreted mucins (MUC; gel forming MUC5AC and MUC2) and shed membrane-bound soluble mucins (MUC1, MUC4, and MUC16). Dry eye disease (DED) is a multifactorial pathology of the preocular tear film with possible damage to the ocular surface classified in two types: (1) aqueous-deficient dry eye and (2) evaporative dry eye, caused by a decrease in goblet cell density that reduces MUC expression and/or by meibomian gland dysfunction, that results in a drop in the lipidic fraction of the tear film.In this work, the binding affinity between HA and MUC2 has been evaluated with three complementary ap-proaches because the secreted MUCs play a pivotal role in the viscoelastic properties of the tear film: 1. Rheo-logical analysis, measuring the mucoadhesive index and the complex viscosity in relation to MM (Molecular Mass) and concentration; 2. Fluorescence analysis, using a fluorescent hydrophobic probe, to investigate the conformational change of MUC2 during the interaction with the HA polymer; 3. Surface plasmon resonance analysis, used to measure the affinity between MUC2 (immobilized on the surface of a sensor chip) and the HA polymers that flowed on it at the molecular level.For all these tests, the mucoadhesive performance of the natural HA linearly increases with the MM, whereas cross-linked HA and other emollient and gelling agents (formulated in artificial tears) do not show the same mucoadhesive properties (with the exception of xanthan gum). The mucoadhesive performance of high MM HA has also been confirmed in conditions that simulate the pathological condition of the tear film during DED by decreasing the MUC2 or oleic acid concentration. Physico-chemical analysis of a series of marketed artificial tears confirms the linear correlation between the MM of the HA used in the products and the mucoadhesive index measured on the ocular surface model.
File in questo prodotto:
File Dimensione Formato  
Guarise_JMBBM_2023.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 3.87 MB
Formato Adobe PDF
3.87 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3485240
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 2
social impact