The need for sustainable energy sources has recently promoted the use of liquefied natural gas (LNG) as a low-carbon fuel. Although economic evaluations indicate the transportation of LNG as a convenient solution for long distances between markets and reservoirs, several concerns are still present regarding its safe use and transportation. The preliminary evaluations performed in this work indicate that credible releases deriving from real bunkering operations result in pools having a diameter smaller than 1 m, which has been poorly investigated so far. Hence, an experimental campaign devoted to the characterization of a medium-scale release of LNG was carried out either in the presence or absence of an ignition source. An evaporation rate of 0.005 kg s−1 m−2 was collected for the non-reactive scenario, whereas the measured burning rate was 0.100 kg s−1 m−2. The reduction factor of 20 demonstrates the inaccuracy in the commonly adopted assumption of equality between these values for the LNG pool. Flame morphology was characterized quantitatively and qualitatively, showing a maximum ratio between flame height and flame diameter equal to 2.5 and temperatures up to 1100 K in the proximity of the flame.

Characterization of Medium-Scale Accidental Releases of LNG

Mocellin, Paolo;Carboni, Mattia;Vianello, Chiara;
2023

Abstract

The need for sustainable energy sources has recently promoted the use of liquefied natural gas (LNG) as a low-carbon fuel. Although economic evaluations indicate the transportation of LNG as a convenient solution for long distances between markets and reservoirs, several concerns are still present regarding its safe use and transportation. The preliminary evaluations performed in this work indicate that credible releases deriving from real bunkering operations result in pools having a diameter smaller than 1 m, which has been poorly investigated so far. Hence, an experimental campaign devoted to the characterization of a medium-scale release of LNG was carried out either in the presence or absence of an ignition source. An evaporation rate of 0.005 kg s−1 m−2 was collected for the non-reactive scenario, whereas the measured burning rate was 0.100 kg s−1 m−2. The reduction factor of 20 demonstrates the inaccuracy in the commonly adopted assumption of equality between these values for the LNG pool. Flame morphology was characterized quantitatively and qualitatively, showing a maximum ratio between flame height and flame diameter equal to 2.5 and temperatures up to 1100 K in the proximity of the flame.
2023
File in questo prodotto:
File Dimensione Formato  
fire-06-00257 (1).pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 3.58 MB
Formato Adobe PDF
3.58 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3486280
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact