BackgroundThe Mediterranean basin is currently facing major changes in fire regimes as a result of climate and land-use changes. These alterations could affect the ability of forests to recover after a fire, hence triggering degradation processes and modifying the provision of fundamental ecosystem services. Examining patterns and drivers of post-fire forest recovery, particularly for obligate seeders without specific fire-adaptive traits, thus becomes a priority for researchers and land managers. We studied the post-fire dynamics of Scots pine (Pinus sylvestris L.) stands affected by a mixed-severity fire in North-Western Italy, aiming to understand the impact of fire on soil properties and assess drivers, spatial distribution, and characteristics of short-term post-fire recovery.ResultsWe observed that fire did not significantly affect soil organic carbon (OC) content, while we detected significantly lower nitrogen (N) content in severely burnt sites. Regeneration density was particularly abundant in medium-severity areas, while it drastically decreased in high-severity patches. The most abundant tree species in the regeneration layer was Scots pine, followed by goat willow (Salix caprea L.), European aspen (Populus tremula L.), and, to a lesser extent, European larch (Larix decidua Mill.). Slope, fire severity, and distance from seed trees emerged as the most important drivers of post-fire forest regeneration patterns.ConclusionsOur results highlight the importance of preserving seed trees from salvage logging, even if they are damaged and have a low survival probability. Active post-fire management, such as tree planting, should be limited to large and severely burnt patches, where natural forest regeneration struggles to settle, increasing the risk of ecosystem degradation. These findings could be useful for informing land managers, helping them to enhance potential mitigation strategies in similar ecosystems and plan appropriate restoration approaches.

Short-term drivers of post-fire forest regeneration in the Western Alps

Lingua E.;
2023

Abstract

BackgroundThe Mediterranean basin is currently facing major changes in fire regimes as a result of climate and land-use changes. These alterations could affect the ability of forests to recover after a fire, hence triggering degradation processes and modifying the provision of fundamental ecosystem services. Examining patterns and drivers of post-fire forest recovery, particularly for obligate seeders without specific fire-adaptive traits, thus becomes a priority for researchers and land managers. We studied the post-fire dynamics of Scots pine (Pinus sylvestris L.) stands affected by a mixed-severity fire in North-Western Italy, aiming to understand the impact of fire on soil properties and assess drivers, spatial distribution, and characteristics of short-term post-fire recovery.ResultsWe observed that fire did not significantly affect soil organic carbon (OC) content, while we detected significantly lower nitrogen (N) content in severely burnt sites. Regeneration density was particularly abundant in medium-severity areas, while it drastically decreased in high-severity patches. The most abundant tree species in the regeneration layer was Scots pine, followed by goat willow (Salix caprea L.), European aspen (Populus tremula L.), and, to a lesser extent, European larch (Larix decidua Mill.). Slope, fire severity, and distance from seed trees emerged as the most important drivers of post-fire forest regeneration patterns.ConclusionsOur results highlight the importance of preserving seed trees from salvage logging, even if they are damaged and have a low survival probability. Active post-fire management, such as tree planting, should be limited to large and severely burnt patches, where natural forest regeneration struggles to settle, increasing the risk of ecosystem degradation. These findings could be useful for informing land managers, helping them to enhance potential mitigation strategies in similar ecosystems and plan appropriate restoration approaches.
2023
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3490286
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact