In the present study we broadly explored the perception of physical and animated motion in bouncing-like scenarios through four experiments. In the first experiment, participants were asked to categorize bouncing-like displays as physical bounce, animated motion, or other. Several parameters of the animations were manipulated, that is, the simulated coefficient of restitution, the value of simulated gravitational acceleration, the motion pattern (uniform acceleration/deceleration or constant speed) and the number of bouncing cycles. In the second experiment, a variable delay at the moment of the collision between the bouncing object and the bouncing surface was introduced. Main results show that, although observers appear to have realistic representations of physical constraints like energy conservation and gravitational acceleration/deceleration, the amount of visual information available in the scene has a strong modulation effect on the extent to which they rely on these representations. A coefficient of restitution >1 was a crucial cue to animacy in displays showing three bouncing cycles, but not in displays showing one bouncing cycle. Additionally, bouncing impressions appear to be driven by perceptual constraints that are unrelated to the physical realism of the scene, like preference for simulated gravitational attraction smaller than g and perceived temporal contiguity between the different phases of bouncing. In the third experiment, the visible opaque bouncing surface was removed from the scene, and the results showed that this did not have any substantial effect on the resulting impressions of physical bounce or animated motion, suggesting that the visual system can fill-in the scene with the missing element. The fourth experiment explored visual impressions of causality in bouncing scenarios. At odds with claims of current causal perception theories, results indicate that a passive object can be perceived as the direct cause of the motion behavior of an active object.

The psychophysics of bouncing: Perceptual constraints, physical constraints, animacy, and phenomenal causality

Vicovaro M.;Parovel G.
2023

Abstract

In the present study we broadly explored the perception of physical and animated motion in bouncing-like scenarios through four experiments. In the first experiment, participants were asked to categorize bouncing-like displays as physical bounce, animated motion, or other. Several parameters of the animations were manipulated, that is, the simulated coefficient of restitution, the value of simulated gravitational acceleration, the motion pattern (uniform acceleration/deceleration or constant speed) and the number of bouncing cycles. In the second experiment, a variable delay at the moment of the collision between the bouncing object and the bouncing surface was introduced. Main results show that, although observers appear to have realistic representations of physical constraints like energy conservation and gravitational acceleration/deceleration, the amount of visual information available in the scene has a strong modulation effect on the extent to which they rely on these representations. A coefficient of restitution >1 was a crucial cue to animacy in displays showing three bouncing cycles, but not in displays showing one bouncing cycle. Additionally, bouncing impressions appear to be driven by perceptual constraints that are unrelated to the physical realism of the scene, like preference for simulated gravitational attraction smaller than g and perceived temporal contiguity between the different phases of bouncing. In the third experiment, the visible opaque bouncing surface was removed from the scene, and the results showed that this did not have any substantial effect on the resulting impressions of physical bounce or animated motion, suggesting that the visual system can fill-in the scene with the missing element. The fourth experiment explored visual impressions of causality in bouncing scenarios. At odds with claims of current causal perception theories, results indicate that a passive object can be perceived as the direct cause of the motion behavior of an active object.
2023
File in questo prodotto:
File Dimensione Formato  
PlosOne2023.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 3.06 MB
Formato Adobe PDF
3.06 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3492742
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact