Bivariate random-effects models represent a recommended approach for meta-analysis of diagnostic test accuracy, jointly modeling study-specific sensitivity and specificity. As the severity of the disease status can vary across studies, a proper analysis should account for the dependence of the accuracy measures on the disease prevalence. To this aim, trivariate generalized linear mixed-effects models have been proposed in the literature, although computational difficulties strongly limit their applicability. In addition, the attention has been mainly paid to cohort studies, where the study-specific disease prevalence can be estimated from, while information from case-control studies is often neglected. To overcome such limits, this article introduces a trivariate approximate normal model, which accounts for disease prevalence along with accuracy measures in cohort studies and sensitivity and specificity in case-control studies. The model represents an extension of the bivariate normal mixed-effects model originally developed for meta-analysis not accounting for disease prevalence, under an approximate normal within-study distribution for the logit of estimated sensitivity and specificity. The components of the approximate within-study covariance matrix are derived and the likelihood function is obtained in closed-form. The approximate likelihood approach is compared to that based on the exact within-study distribution and to its modifications following a pseudo-likelihood strategy aimed at reducing the computational effort. The comparison is based on simulation studies in a variety of scenarios, and illustrated in a meta-analysis about the accuracy of a test to diagnose fungal infection and a meta-analysis of a noninvasive test to detect colorectal cancer.
Approximate likelihood and pseudo-likelihood inference in meta-analysis of diagnostic accuracy studies accounting for disease prevalence and study design
	
	
	
		
		
		
		
		
	
	
	
	
	
	
	
	
		
		
		
		
		
			
			
			
		
		
		
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
		
		
		
	
Guolo A.
			2023
Abstract
Bivariate random-effects models represent a recommended approach for meta-analysis of diagnostic test accuracy, jointly modeling study-specific sensitivity and specificity. As the severity of the disease status can vary across studies, a proper analysis should account for the dependence of the accuracy measures on the disease prevalence. To this aim, trivariate generalized linear mixed-effects models have been proposed in the literature, although computational difficulties strongly limit their applicability. In addition, the attention has been mainly paid to cohort studies, where the study-specific disease prevalence can be estimated from, while information from case-control studies is often neglected. To overcome such limits, this article introduces a trivariate approximate normal model, which accounts for disease prevalence along with accuracy measures in cohort studies and sensitivity and specificity in case-control studies. The model represents an extension of the bivariate normal mixed-effects model originally developed for meta-analysis not accounting for disease prevalence, under an approximate normal within-study distribution for the logit of estimated sensitivity and specificity. The components of the approximate within-study covariance matrix are derived and the likelihood function is obtained in closed-form. The approximate likelihood approach is compared to that based on the exact within-study distribution and to its modifications following a pseudo-likelihood strategy aimed at reducing the computational effort. The comparison is based on simulation studies in a variety of scenarios, and illustrated in a meta-analysis about the accuracy of a test to diagnose fungal infection and a meta-analysis of a noninvasive test to detect colorectal cancer.| File | Dimensione | Formato | |
|---|---|---|---|
| 
									
										
										
										
										
											
												
												
												    
												
											
										
									
									
										
										
											Statistics in Medicine - 2023 - Guolo - Approximate likelihood and pseudo‐likelihood inference in meta‐analysis of.pdf
										
																				
									
										
											 accesso aperto 
											Tipologia:
											Published (Publisher's Version of Record)
										 
									
									
									
									
										
											Licenza:
											
											
												Creative commons
												
												
													
													
													
												
												
											
										 
									
									
										Dimensione
										1.95 MB
									 
									
										Formato
										Adobe PDF
									 
										
										
								 | 
								1.95 MB | Adobe PDF | Visualizza/Apri | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




