Tokamak plasmas can amplify very small resonant components of error fields (EFs) when operating close to the ideal magneto-hydrodynamic (MHD) limits. Such EFs are well diagnosed in ASDEX Upgrade tokamak (Igochine V et al 2017 Nucl. Fusion 57 116027, Maraschek M et al 40th EPS Conf. on Plasma Physics 2013 P4.127), which allows to model EF as well as the correction required for the optimal compensation. Experiments on ASDEX Upgrade show that EF correction considering the plasma effect, as it is foreseen for ITER, is necessary even in the case of small resonant EF. Such correction improves the achievable β N by 10% and makes discharges more stable with respect to ideal modes.

Plasma effect on error fields correction at high βN in ASDEX Upgrade

Bettini P.;Piron L.;Voltolina D.;
2023

Abstract

Tokamak plasmas can amplify very small resonant components of error fields (EFs) when operating close to the ideal magneto-hydrodynamic (MHD) limits. Such EFs are well diagnosed in ASDEX Upgrade tokamak (Igochine V et al 2017 Nucl. Fusion 57 116027, Maraschek M et al 40th EPS Conf. on Plasma Physics 2013 P4.127), which allows to model EF as well as the correction required for the optimal compensation. Experiments on ASDEX Upgrade show that EF correction considering the plasma effect, as it is foreseen for ITER, is necessary even in the case of small resonant EF. Such correction improves the achievable β N by 10% and makes discharges more stable with respect to ideal modes.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3493910
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact