The fabrication of a wide range of polymer-derived ceramic parts with high geometric complexity through a novel hybrid additive manufacturing technique is presented in this article. The process that we introduced in a previous work uses the powder bed fusion technology to manufacture high porous polymeric preforms to be then converted into ceramics through preceramic polymer infiltration and pyrolysis. The cellular architectures of a rotated cube (strut-based) and a gyroid (sheet-based) with 25 mm diameter, 44 mm height and 67 % of geometric macroporosity were generated and used for the fabrication. The complex structures were 3D printed and polycarbosilane, polycarbosiloxane, polysilazane and furan liquid polymers were used to produce SiC, SiOC, SiCN and glassy carbon, respectively. Despite a linear shrinkage of about 24 %, the parts maintained their designed complex shape without deformations. The significant advantages of the proposed method are the maturity of powder bed fusion for polymers with respect to ceramic additive manufacturing techniques and the possibility to fabricate net-shape complex ceramic parts directly from preceramic precursors.

Powder bed fusion of polyamide powders combined with different preceramic polymers infiltration and pyrolysis to produce complex-shaped ceramics

Pelanconi M.;Colombo P.;
2023

Abstract

The fabrication of a wide range of polymer-derived ceramic parts with high geometric complexity through a novel hybrid additive manufacturing technique is presented in this article. The process that we introduced in a previous work uses the powder bed fusion technology to manufacture high porous polymeric preforms to be then converted into ceramics through preceramic polymer infiltration and pyrolysis. The cellular architectures of a rotated cube (strut-based) and a gyroid (sheet-based) with 25 mm diameter, 44 mm height and 67 % of geometric macroporosity were generated and used for the fabrication. The complex structures were 3D printed and polycarbosilane, polycarbosiloxane, polysilazane and furan liquid polymers were used to produce SiC, SiOC, SiCN and glassy carbon, respectively. Despite a linear shrinkage of about 24 %, the parts maintained their designed complex shape without deformations. The significant advantages of the proposed method are the maturity of powder bed fusion for polymers with respect to ceramic additive manufacturing techniques and the possibility to fabricate net-shape complex ceramic parts directly from preceramic precursors.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3494181
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact