We consider the Laplace equation in a domain of R-n, n >= 3, with a small inclusion of size epsilon. On the boundary of the inclusion we define a nonlinear nonautonomous transmission condition. For epsilon small enough one can prove that the problem has solutions. In this paper, we study the local uniqueness of such solutions. (C) 2019 Elsevier Ltd. All rights reserved.
Local uniqueness of the solutions for a singularly perturbed nonlinear nonautonomous transmission problem
Dalla Riva, M;Musolino, P
2020
Abstract
We consider the Laplace equation in a domain of R-n, n >= 3, with a small inclusion of size epsilon. On the boundary of the inclusion we define a nonlinear nonautonomous transmission condition. For epsilon small enough one can prove that the problem has solutions. In this paper, we study the local uniqueness of such solutions. (C) 2019 Elsevier Ltd. All rights reserved.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
20190626_NonAutTrUniq.pdf
accesso aperto
Tipologia:
Accepted (AAM - Author's Accepted Manuscript)
Licenza:
Creative commons
Dimensione
395.38 kB
Formato
Adobe PDF
|
395.38 kB | Adobe PDF | Visualizza/Apri |
|
dallariva2020.pdf
Accesso riservato
Tipologia:
Published (Publisher's Version of Record)
Licenza:
Accesso privato - non pubblico
Dimensione
915.02 kB
Formato
Adobe PDF
|
915.02 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




