This paper addresses the first direct investigation of the energy budget in the solar corona. Exploiting joint observations of the same coronal plasma by Parker Solar Probe and the Metis coronagraph aboard Solar Orbiter and the conserved equations for mass, magnetic flux, and wave action, we estimate the values of all terms comprising the total energy flux of the proton component of the slow solar wind from 6.3 to 13.3 R-circle dot. For distance from the Sun to less than 7 R-circle dot, we find that the primary source of solar wind energy is magnetic fluctuations including Alfven waves. As the plasma flows away from the low corona, magnetic energy is gradually converted into kinetic energy, which dominates the total energy flux at heights above 7 R-circle dot. It is found too that the electric potential energy flux plays an important role in accelerating the solar wind only at altitudes below 6 R-circle dot, while enthalpy and heat fluxes only become important at even lower heights. The results finally show that energy equipartition does not exist in the solar corona.

Energy Budget in the Solar Corona

Naletto, G;
2023

Abstract

This paper addresses the first direct investigation of the energy budget in the solar corona. Exploiting joint observations of the same coronal plasma by Parker Solar Probe and the Metis coronagraph aboard Solar Orbiter and the conserved equations for mass, magnetic flux, and wave action, we estimate the values of all terms comprising the total energy flux of the proton component of the slow solar wind from 6.3 to 13.3 R-circle dot. For distance from the Sun to less than 7 R-circle dot, we find that the primary source of solar wind energy is magnetic fluctuations including Alfven waves. As the plasma flows away from the low corona, magnetic energy is gradually converted into kinetic energy, which dominates the total energy flux at heights above 7 R-circle dot. It is found too that the electric potential energy flux plays an important role in accelerating the solar wind only at altitudes below 6 R-circle dot, while enthalpy and heat fluxes only become important at even lower heights. The results finally show that energy equipartition does not exist in the solar corona.
File in questo prodotto:
File Dimensione Formato  
Telloni_2023_ApJ_954_108.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 658.93 kB
Formato Adobe PDF
658.93 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3495804
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact