Arabidopsis thaliana research relies heavily on the use of in vitro culture media for phenotypic characterization of seedling responses to intrinsic and extrinsic signals. For this, the most favorable growth conditions must be established and used as a reference, especially in those studies aimed at characterizing responses to abiotic and biotic stresses. Standard in vitro protocols commonly used for the growth and characterization of A. thaliana plants show suboptimal composition due to excessive nutrient content, representing an abiotic stress per se. We study here the nutritional factors that affect in vitro growth of A. thaliana seedlings and describe an optimized and nutritionally balanced culture medium. We show that this medium is appropriate for the growth and propagation of many A. thaliana mutants, including those that are unable to complete the life cycle because they lack the root system. The described method avoids bias in phenotypic characterization during abiotic/biotic stress experiments. This protocol makes it possible to complete the life cycle in 40-45 days and obtain sufficient seeds without the need for seed sterilization, avoiding the use of soil and saving space and time.

A New In Vitro Growth System for Phenotypic Characterization and Seed Propagation of Arabidopsis thaliana

Ruperti B.;
2023

Abstract

Arabidopsis thaliana research relies heavily on the use of in vitro culture media for phenotypic characterization of seedling responses to intrinsic and extrinsic signals. For this, the most favorable growth conditions must be established and used as a reference, especially in those studies aimed at characterizing responses to abiotic and biotic stresses. Standard in vitro protocols commonly used for the growth and characterization of A. thaliana plants show suboptimal composition due to excessive nutrient content, representing an abiotic stress per se. We study here the nutritional factors that affect in vitro growth of A. thaliana seedlings and describe an optimized and nutritionally balanced culture medium. We show that this medium is appropriate for the growth and propagation of many A. thaliana mutants, including those that are unable to complete the life cycle because they lack the root system. The described method avoids bias in phenotypic characterization during abiotic/biotic stress experiments. This protocol makes it possible to complete the life cycle in 40-45 days and obtain sufficient seeds without the need for seed sterilization, avoiding the use of soil and saving space and time.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3496586
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact