Background: Mixed-effects models are the current standard for the analysis of behavioral studies in psycholinguistics and related fields, given their ability to simultaneously model crossed random effects for subjects and items. However, they are hardly applied in neuroimaging and psychophysiology, where the use of mass univariate analyses in combination with permutation testing would be too computationally demanding to be practicable with mixed models. New method: Here, we propose and validate an analytical strategy that enables the use of linear mixed models (LMM) with crossed random intercepts in mass univariate analyses of EEG data (lmeEEG). It avoids the unfeasible computational costs that would arise from massive permutation testing with LMM using a simple solution: removing random-effects contributions from EEG data and performing mass univariate linear analysis and permutations on the obtained marginal EEG. Results: lmeEEG showed excellent performance properties in terms of power and false positive rate. Comparison with existing methods: lmeEEG overcomes the computational costs of standard available approaches (our method was indeed more than 300 times faster). Conclusions: lmeEEG allows researchers to use mixed models with EEG mass univariate analyses. Thanks to the possibility offered by the method described here, we anticipate that LMM will become increasingly important in neuroscience. Data and codes are available at osf.io/kw87a. The codes and a tutorial are also available at github.com/antovis86/lmeEEG.
lmeEEG: Mass linear mixed-effects modeling of EEG data with crossed random effects
	
	
	
		
		
		
		
		
	
	
	
	
	
	
	
	
		
		
		
		
		
			
			
			
		
		
		
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
		
		
		
	
Visalli A.
;Montefinese M.;Viviani G.;Finos L.;Vallesi A.;Ambrosini E.
			2024
Abstract
Background: Mixed-effects models are the current standard for the analysis of behavioral studies in psycholinguistics and related fields, given their ability to simultaneously model crossed random effects for subjects and items. However, they are hardly applied in neuroimaging and psychophysiology, where the use of mass univariate analyses in combination with permutation testing would be too computationally demanding to be practicable with mixed models. New method: Here, we propose and validate an analytical strategy that enables the use of linear mixed models (LMM) with crossed random intercepts in mass univariate analyses of EEG data (lmeEEG). It avoids the unfeasible computational costs that would arise from massive permutation testing with LMM using a simple solution: removing random-effects contributions from EEG data and performing mass univariate linear analysis and permutations on the obtained marginal EEG. Results: lmeEEG showed excellent performance properties in terms of power and false positive rate. Comparison with existing methods: lmeEEG overcomes the computational costs of standard available approaches (our method was indeed more than 300 times faster). Conclusions: lmeEEG allows researchers to use mixed models with EEG mass univariate analyses. Thanks to the possibility offered by the method described here, we anticipate that LMM will become increasingly important in neuroscience. Data and codes are available at osf.io/kw87a. The codes and a tutorial are also available at github.com/antovis86/lmeEEG.| File | Dimensione | Formato | |
|---|---|---|---|
| 2023.01.18.524560v4.full.pdf accesso aperto 
											Tipologia:
											Preprint (AM - Author's Manuscript - submitted)
										 
											Licenza:
											
											
												Creative commons
												
												
													
													
													
												
												
											
										 
										Dimensione
										1.1 MB
									 
										Formato
										Adobe PDF
									 | 1.1 MB | Adobe PDF | Visualizza/Apri | 
| 1-s2.0-S0165027023002108-main.pdf Accesso riservato 
											Tipologia:
											Published (Publisher's Version of Record)
										 
											Licenza:
											
											
												Accesso privato - non pubblico
												
												
												
											
										 
										Dimensione
										2.65 MB
									 
										Formato
										Adobe PDF
									 | 2.65 MB | Adobe PDF | Visualizza/Apri Richiedi una copia | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




