The Spring transition to Daylight Saving Time (DST) has been associated with several health and road safety issues. Previous literature has focused primarily on the analysis of historical crash and hospitalization data, without investigating specific crash contributing factors, such as driving fatigue. The present study aims to uncover the effects of DST-related circadian desynchrony and sleep deprivation on driving fatigue, by means of a driving simulator experiment. Eighteen participants (all males, age range 21–30 years, mean = 24.2, SD = 2.9) completed two 50-minute trials (at one week distance, same time and same day of the week) on a monotonous highway environment, the second one taking place in the week after the Spring transition to DST. Driving fatigue was evaluated by analysing several different variables (including driving-based, physiological and subjective indices) and by comparison with a historical cohort of pertinent, matched controls who had also undergone two trials, but in the absence of any time change in between. Results showed a considerable rise in fatigue levels throughout the driving task in both trials, but with significantly poorer performance in the post-DST trial, documented by a worsening in vehicle lateral control and an increase in eyelid closure. However, participants seemed unable to perceive this decrease in their alertness, which most likely prevented them from implementing fatigue-coping strategies. These findings indicate that DST has a detrimental effect on driving fatigue in young male drivers in the week after the Spring transition, and provide valuable insights into the complex relationship between DST and road safety.

Driving fatigue increases after the Spring transition to Daylight Saving Time in young male drivers: A pilot study

Orsini F.
;
Zarantonello L.;Montagnese S.;Rossi R.
2023

Abstract

The Spring transition to Daylight Saving Time (DST) has been associated with several health and road safety issues. Previous literature has focused primarily on the analysis of historical crash and hospitalization data, without investigating specific crash contributing factors, such as driving fatigue. The present study aims to uncover the effects of DST-related circadian desynchrony and sleep deprivation on driving fatigue, by means of a driving simulator experiment. Eighteen participants (all males, age range 21–30 years, mean = 24.2, SD = 2.9) completed two 50-minute trials (at one week distance, same time and same day of the week) on a monotonous highway environment, the second one taking place in the week after the Spring transition to DST. Driving fatigue was evaluated by analysing several different variables (including driving-based, physiological and subjective indices) and by comparison with a historical cohort of pertinent, matched controls who had also undergone two trials, but in the absence of any time change in between. Results showed a considerable rise in fatigue levels throughout the driving task in both trials, but with significantly poorer performance in the post-DST trial, documented by a worsening in vehicle lateral control and an increase in eyelid closure. However, participants seemed unable to perceive this decrease in their alertness, which most likely prevented them from implementing fatigue-coping strategies. These findings indicate that DST has a detrimental effect on driving fatigue in young male drivers in the week after the Spring transition, and provide valuable insights into the complex relationship between DST and road safety.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3501771
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact