Every conic symplectic singularity admits a universal Poisson deformation and a universal filtered quantization, thanks to the work of Losev and Namikawa. We begin this paper by showing that every such variety admits a universal equivariant Poisson deformation and a universal equivariant quantization with respect to a reductive group acting on it by $\mathbb{C}^\times$-equivariant Poisson automorphisms. We go on to study these definitions in the context of nilpotent Slodowy slices. First, we give a complete description of the cases in which the finite $W$-algebra is a universal filtered quantization of the slice, building on the work of Lehn–Namikawa–Sorger. This leads to a near-complete classification of the filtered quantizations of nilpotent Slodowy slices. The subregular slices in non-simply laced Lie algebras are especially interesting: with some minor restrictions on Dynkin type, we prove that the finite $W$-algebra is a universal equivariant quantization with respect to the Dynkin automorphisms coming from the unfolding of the Dynkin diagram. This can be seen as a non-commutative analogue of Slodowy's theorem. Finally, we apply this result to give a presentation of the subregular finite $W$-algebra of type $\mathsf{B}$ as a quotient of a shifted Yangian.
Universal filtered quantizations of nilpotent Slodowy slices
F. Ambrosio;G. Carnovale;F. Esposito;
2024
Abstract
Every conic symplectic singularity admits a universal Poisson deformation and a universal filtered quantization, thanks to the work of Losev and Namikawa. We begin this paper by showing that every such variety admits a universal equivariant Poisson deformation and a universal equivariant quantization with respect to a reductive group acting on it by $\mathbb{C}^\times$-equivariant Poisson automorphisms. We go on to study these definitions in the context of nilpotent Slodowy slices. First, we give a complete description of the cases in which the finite $W$-algebra is a universal filtered quantization of the slice, building on the work of Lehn–Namikawa–Sorger. This leads to a near-complete classification of the filtered quantizations of nilpotent Slodowy slices. The subregular slices in non-simply laced Lie algebras are especially interesting: with some minor restrictions on Dynkin type, we prove that the finite $W$-algebra is a universal equivariant quantization with respect to the Dynkin automorphisms coming from the unfolding of the Dynkin diagram. This can be seen as a non-commutative analogue of Slodowy's theorem. Finally, we apply this result to give a presentation of the subregular finite $W$-algebra of type $\mathsf{B}$ as a quotient of a shifted Yangian.File | Dimensione | Formato | |
---|---|---|---|
ACET-published.pdf
accesso aperto
Tipologia:
Preprint (submitted version)
Licenza:
Accesso libero
Dimensione
464.75 kB
Formato
Adobe PDF
|
464.75 kB | Adobe PDF | Visualizza/Apri |
10.4171-jncg-544.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Creative commons
Dimensione
609.89 kB
Formato
Adobe PDF
|
609.89 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.