: Current knowledge regarding how the focus of our attention during face processing influences neural responses largely comes from neuroimaging studies reporting on regional brain activations. The present study was designed to add novel insights to this research by studying how attention can differentially impact the way cortical regions interact during emotional face processing. High-density electroencephalogram was recorded in a sample of fifty-two healthy participants during an emotional face processing task. The task required participants to either attend to the expressions (i.e., overt processing) or attend to a perceptual distractor, which rendered the expressions task-irrelevant (i.e., covert processing). Functional connectivity in the alpha band was estimated in source space and modeled using graph theory to quantify whole-brain integration and segregation. Results revealed that overt processing of facial expressions is linked to reduced cortical segregation and increased cortical integration, this latter specifically for negative expressions of fear and sadness. Furthermore, we observed increased communication efficiency during overt processing of negative expressions between the core and the extended face processing systems. Overall, these findings reveal that attention makes the interaction among the nodes involved in face processing more efficient, also uncovering a connectivity signature of the prioritized processing mechanism of negative expressions, that is an increased cross-communication within the nodes of the face processing network.

EEG alpha band functional connectivity reveals distinct cortical dynamics for overt and covert emotional face processing

Maffei, Antonio;Coccaro, Ambra;Sessa, Paola;Liotti, Mario
2023

Abstract

: Current knowledge regarding how the focus of our attention during face processing influences neural responses largely comes from neuroimaging studies reporting on regional brain activations. The present study was designed to add novel insights to this research by studying how attention can differentially impact the way cortical regions interact during emotional face processing. High-density electroencephalogram was recorded in a sample of fifty-two healthy participants during an emotional face processing task. The task required participants to either attend to the expressions (i.e., overt processing) or attend to a perceptual distractor, which rendered the expressions task-irrelevant (i.e., covert processing). Functional connectivity in the alpha band was estimated in source space and modeled using graph theory to quantify whole-brain integration and segregation. Results revealed that overt processing of facial expressions is linked to reduced cortical segregation and increased cortical integration, this latter specifically for negative expressions of fear and sadness. Furthermore, we observed increased communication efficiency during overt processing of negative expressions between the core and the extended face processing systems. Overall, these findings reveal that attention makes the interaction among the nodes involved in face processing more efficient, also uncovering a connectivity signature of the prioritized processing mechanism of negative expressions, that is an increased cross-communication within the nodes of the face processing network.
2023
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3502402
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact