Purpose: Accurate histological diagnosis in Hirschsprung disease (HD) is challenging, due to its complexity and potential for errors. In this study, we present an artificial intelligence (AI)-based method designed to identify ganglionic cells and hypertrophic nerves in HD histology. Methods: Formalin-fixed samples were used and an expert pathologist and a surgeon annotated these slides on a web-based platform, identifying ganglionic cells and nerves. Images were partitioned into square sections, augmented through data manipulation techniques and used to develop two distinct U-net models: one for detecting ganglionic cells and normal nerves; the other to recognise hypertrophic nerves. Results: The study included 108 annotated samples, resulting in 19,600 images after data augmentation and manually segmentation. Subsequently, 17,655 slides without target elements were excluded. The algorithm was trained using 1945 slides (930 for model 1 and 1015 for model 2) with 1556 slides used for training the supervised network and 389 for validation. The accuracy of model 1 was found to be 92.32%, while model 2 achieved an accuracy of 91.5%. Conclusion: The AI-based U-net technique demonstrates robustness in detecting ganglion cells and nerves in HD. The deep learning approach has the potential to standardise and streamline HD diagnosis, benefiting patients and aiding in training of pathologists.

Enhancing diagnosis of Hirschsprung’s disease using deep learning from histological sections of post pull-through specimens: preliminary results

Duci M.;Dei Tos A. P.;Gamba Piergiorgio.;Uccheddu F.;Fascetti Leon F.
2024

Abstract

Purpose: Accurate histological diagnosis in Hirschsprung disease (HD) is challenging, due to its complexity and potential for errors. In this study, we present an artificial intelligence (AI)-based method designed to identify ganglionic cells and hypertrophic nerves in HD histology. Methods: Formalin-fixed samples were used and an expert pathologist and a surgeon annotated these slides on a web-based platform, identifying ganglionic cells and nerves. Images were partitioned into square sections, augmented through data manipulation techniques and used to develop two distinct U-net models: one for detecting ganglionic cells and normal nerves; the other to recognise hypertrophic nerves. Results: The study included 108 annotated samples, resulting in 19,600 images after data augmentation and manually segmentation. Subsequently, 17,655 slides without target elements were excluded. The algorithm was trained using 1945 slides (930 for model 1 and 1015 for model 2) with 1556 slides used for training the supervised network and 389 for validation. The accuracy of model 1 was found to be 92.32%, while model 2 achieved an accuracy of 91.5%. Conclusion: The AI-based U-net technique demonstrates robustness in detecting ganglion cells and nerves in HD. The deep learning approach has the potential to standardise and streamline HD diagnosis, benefiting patients and aiding in training of pathologists.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3504171
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact