Online e-commerce giants are continuously investigating innovative ways to improve their practices in last-mile deliveries. Inspired by the current practices at JD.com (the largest online retailer by revenue in China), we investigate a delivery problem that we call the traveling salesman problem with bike and robot (TSPBR), where a cargo bike is aided by a self-driving robot to deliver parcels to customers in urban areas. We present two mixedinteger linear programming models and describe a set of valid inequalities to strengthen their linear relaxation. We show that these models can yield optimal solutions of TSPBR instances with up to 60 nodes. To efficiently find heuristic solutions, we also present a genetic algorithm based on a dynamic programming recursion that efficiently explores large neighborhoods. We computationally assess this genetic algorithm on instances provided by JD.com and show that high-quality solutions can be found in a few minutes of computing time. Finally, we provide some managerial insights to assess the impact of deploying the bike-and-robot tandem to deliver parcels in the TSPBR setting.

Synchronized Deliveries with a Bike and a Self-Driving Robot

Roberti, Roberto
2023

Abstract

Online e-commerce giants are continuously investigating innovative ways to improve their practices in last-mile deliveries. Inspired by the current practices at JD.com (the largest online retailer by revenue in China), we investigate a delivery problem that we call the traveling salesman problem with bike and robot (TSPBR), where a cargo bike is aided by a self-driving robot to deliver parcels to customers in urban areas. We present two mixedinteger linear programming models and describe a set of valid inequalities to strengthen their linear relaxation. We show that these models can yield optimal solutions of TSPBR instances with up to 60 nodes. To efficiently find heuristic solutions, we also present a genetic algorithm based on a dynamic programming recursion that efficiently explores large neighborhoods. We computationally assess this genetic algorithm on instances provided by JD.com and show that high-quality solutions can be found in a few minutes of computing time. Finally, we provide some managerial insights to assess the impact of deploying the bike-and-robot tandem to deliver parcels in the TSPBR setting.
2023
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3504309
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact