Axion helioscopes search for solar axions and axionlike particles via inverse Primakoff conversion in strong laboratory magnets pointed at the Sun. Anticipating the detection of solar axions, we determine the potential for the planned next-generation helioscope, the International Axion Observatory (IAXO), to measure or constrain the solar magnetic field. To do this we consider a previously neglected component of the solar axion flux at sub-keV energies arising from the conversion of longitudinal plasmons. This flux is sensitively dependent to the magnetic field profile of the Sun, with lower energies corresponding to axions converting into photons at larger solar radii. If the detector technology eventually installed in IAXO has an energy resolution better than 200 eV, then solar axions could become an even more powerful messenger than neutrinos of the magnetic field in the core of the Sun. For energy resolutions better than 10 eV, IAXO could access the inner 70% of the Sun and begin t...

Axion helioscopes as solar magnetometers

Edoardo Vitagliano
2020

Abstract

Axion helioscopes search for solar axions and axionlike particles via inverse Primakoff conversion in strong laboratory magnets pointed at the Sun. Anticipating the detection of solar axions, we determine the potential for the planned next-generation helioscope, the International Axion Observatory (IAXO), to measure or constrain the solar magnetic field. To do this we consider a previously neglected component of the solar axion flux at sub-keV energies arising from the conversion of longitudinal plasmons. This flux is sensitively dependent to the magnetic field profile of the Sun, with lower energies corresponding to axions converting into photons at larger solar radii. If the detector technology eventually installed in IAXO has an energy resolution better than 200 eV, then solar axions could become an even more powerful messenger than neutrinos of the magnetic field in the core of the Sun. For energy resolutions better than 10 eV, IAXO could access the inner 70% of the Sun and begin t...
2020
File in questo prodotto:
File Dimensione Formato  
PhysRevD.102.043019.pdf

Accesso riservato

Tipologia: Published (Publisher's Version of Record)
Licenza: Accesso privato - non pubblico
Dimensione 1.65 MB
Formato Adobe PDF
1.65 MB Adobe PDF Visualizza/Apri   Richiedi una copia
2006.10415v2.pdf

accesso aperto

Tipologia: Preprint (AM - Author's Manuscript - submitted)
Licenza: Altro
Dimensione 4.76 MB
Formato Adobe PDF
4.76 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3505152
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 31
  • OpenAlex ND
social impact