The information implicitly represented in the state of physical systems allows for their analysis using analytical techniques from statistical mechanics and information theory. This approach has been successfully applied to complex networks, including biophysical systems such as virus-host protein-protein interactions and whole-brain models in health and disease, drawing inspiration from quantum statistical physics. Here we propose a general mathematical framework for modeling information dynamics on complex networks, where the internal node states are vector valued, allowing each node to carry multiple types of information. This setup is relevant for various biophysical and sociotechnological models of complex systems, ranging from viral dynamics on networks to models of opinion dynamics and social contagion. Instead of focusing on node-node interactions, we shift our attention to the flow of information between network configurations. We uncover fundamental differences between widely used spin models on networks, such as voter and kinetic dynamics, which cannot be detected through classical node-based analysis. We illustrate the mathematical framework further through an exemplary application to epidemic spreading on a low-dimensional network. Our model provides an opportunity to adapt powerful analytical methods from quantum many-body systems to study the interplay between structure and dynamics in interconnected systems.

Emergent information dynamics in many-body interconnected systems

De Domenico M.
2023

Abstract

The information implicitly represented in the state of physical systems allows for their analysis using analytical techniques from statistical mechanics and information theory. This approach has been successfully applied to complex networks, including biophysical systems such as virus-host protein-protein interactions and whole-brain models in health and disease, drawing inspiration from quantum statistical physics. Here we propose a general mathematical framework for modeling information dynamics on complex networks, where the internal node states are vector valued, allowing each node to carry multiple types of information. This setup is relevant for various biophysical and sociotechnological models of complex systems, ranging from viral dynamics on networks to models of opinion dynamics and social contagion. Instead of focusing on node-node interactions, we shift our attention to the flow of information between network configurations. We uncover fundamental differences between widely used spin models on networks, such as voter and kinetic dynamics, which cannot be detected through classical node-based analysis. We illustrate the mathematical framework further through an exemplary application to epidemic spreading on a low-dimensional network. Our model provides an opportunity to adapt powerful analytical methods from quantum many-body systems to study the interplay between structure and dynamics in interconnected systems.
2023
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3505709
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact