There is a growing interest in performing playback experiments to understand which acoustical cues trigger specific behavioral/emotional responses in dogs. However, very limited studies have focused their attention on more basic aspects of hearing such as sensitivity, i.e., the identification of minimal intensity thresholds across different frequencies. Most previous studies relied on electrophysiological methods for audiograms for dogs, but these methods are considered less accurate than assessments based on behavioral responses. To our knowledge, only one study has established hearing thresholds using a behavioral assessment on four dogs but using a method that did not allow potential improvement throughout the sessions. In the present study, we devised an assessment procedure based on a staircase method. Implying the adaptation of the assessed intensity on the dogs’ performance, this approach grants several assessments around the actual hearing threshold of the animal, thereby increasing the reliability of the result. We used such a method to determine hearing thresholds at three frequencies (0.5, 4.0, and 20.0 kHz). Five dogs were tested in each frequency. The hearing thresholds were found to be 19.5 +/- 2.8 dB SPL at 0.5 kHz, 14.0 +/- 4.5 dB SPL at 4.0 kHz, and 8.5 +/- 12.8 dB SPL at 20.0 kHz. No improvement in performance was visible across the procedure. While the thresholds at 0.5 and 4.0 kHz were in line with the previous literature, the threshold at 20 kHz was remarkably lower than expected. Dogs’ ability to produce vocalization beyond 20 kHz, potentially used in short-range communication, and the selective pressure linked to intra-specific communication in social canids are discussed as potential explanations for the sensitivity to higher frequencies.

Determining Hearing Thresholds in Dogs Using the Staircase Method

Cécile Guérineau;Anna Broseghini;Miina Lõoke;Paolo Mongillo
;
Lieta Marinelli
2024

Abstract

There is a growing interest in performing playback experiments to understand which acoustical cues trigger specific behavioral/emotional responses in dogs. However, very limited studies have focused their attention on more basic aspects of hearing such as sensitivity, i.e., the identification of minimal intensity thresholds across different frequencies. Most previous studies relied on electrophysiological methods for audiograms for dogs, but these methods are considered less accurate than assessments based on behavioral responses. To our knowledge, only one study has established hearing thresholds using a behavioral assessment on four dogs but using a method that did not allow potential improvement throughout the sessions. In the present study, we devised an assessment procedure based on a staircase method. Implying the adaptation of the assessed intensity on the dogs’ performance, this approach grants several assessments around the actual hearing threshold of the animal, thereby increasing the reliability of the result. We used such a method to determine hearing thresholds at three frequencies (0.5, 4.0, and 20.0 kHz). Five dogs were tested in each frequency. The hearing thresholds were found to be 19.5 +/- 2.8 dB SPL at 0.5 kHz, 14.0 +/- 4.5 dB SPL at 4.0 kHz, and 8.5 +/- 12.8 dB SPL at 20.0 kHz. No improvement in performance was visible across the procedure. While the thresholds at 0.5 and 4.0 kHz were in line with the previous literature, the threshold at 20 kHz was remarkably lower than expected. Dogs’ ability to produce vocalization beyond 20 kHz, potentially used in short-range communication, and the selective pressure linked to intra-specific communication in social canids are discussed as potential explanations for the sensitivity to higher frequencies.
2024
File in questo prodotto:
File Dimensione Formato  
Guerineau et al. 2024 Vetrinary Sciences.pdf

accesso aperto

Descrizione: articolo completa
Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 1.79 MB
Formato Adobe PDF
1.79 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3506031
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact