RR Lyrae are a well-known class of pulsating horizontal branch stars widely used as tracers of old, metal-poor stellar populations. However, mounting observational evidence shows that a significant fraction of these stars may be young and metal-rich. Here, through detailed binary stellar evolution modelling, we show that all such metal-rich RR Lyrae can be naturally produced through binary interactions. Binary companions of these RR Lyrae stars formed through binary interactions partly strip their progenitor’s envelopes during a preceding red giant phase. As a result, stripped horizontal branch stars become bluer than their isolated stellar evolution counterparts and thus end up in the instability strip. In contrast, in the single evolution scenario, the stars can attain such colours only at large age and low metallicity. While binary-made RR Lyrae can possess any ages and metallicities, their Galactic population is relatively young (1 – 9 Gyr) and dominated by the thin disc and the bulge. We show that Galactic RR Lyrae from binary evolution are produced at rates compatible with the observed metal-rich population and have consistent G-band magnitudes, Galactic kinematics, and pulsation properties. Furthermore, these systems dominate the RR Lyrae population in the solar neighbourhood. We predict that all metal-rich RR Lyrae have an A, F, G, or K-type companion with a long orbital period (P ≳ 1000 d). Observationally characterizing the orbital periods and masses of such stellar companions will provide valuable new constraints on mass and angular momentum-loss efficiency for Sun-like accretors and the nature of RR Lyrae populations.

RR Lyrae from binary evolution: abundant, young, and metal-rich

Iorio, Giuliano
;
Giacobbo, Nicola
2024

Abstract

RR Lyrae are a well-known class of pulsating horizontal branch stars widely used as tracers of old, metal-poor stellar populations. However, mounting observational evidence shows that a significant fraction of these stars may be young and metal-rich. Here, through detailed binary stellar evolution modelling, we show that all such metal-rich RR Lyrae can be naturally produced through binary interactions. Binary companions of these RR Lyrae stars formed through binary interactions partly strip their progenitor’s envelopes during a preceding red giant phase. As a result, stripped horizontal branch stars become bluer than their isolated stellar evolution counterparts and thus end up in the instability strip. In contrast, in the single evolution scenario, the stars can attain such colours only at large age and low metallicity. While binary-made RR Lyrae can possess any ages and metallicities, their Galactic population is relatively young (1 – 9 Gyr) and dominated by the thin disc and the bulge. We show that Galactic RR Lyrae from binary evolution are produced at rates compatible with the observed metal-rich population and have consistent G-band magnitudes, Galactic kinematics, and pulsation properties. Furthermore, these systems dominate the RR Lyrae population in the solar neighbourhood. We predict that all metal-rich RR Lyrae have an A, F, G, or K-type companion with a long orbital period (P ≳ 1000 d). Observationally characterizing the orbital periods and masses of such stellar companions will provide valuable new constraints on mass and angular momentum-loss efficiency for Sun-like accretors and the nature of RR Lyrae populations.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3506183
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact