Mediterranean climates are characterized by warm, dry summers and mild, rainy winters. Previous studies suggest that over the last 1.36 Myr, Mediterranean winter rainfalls were in phase with the African monsoon. Here we present a high-resolution terrestrial and marine dataset for the Marine Isotope Stage 17 interglacial (Middle Pleistocene) from Southern Italy, showing that precipitation rates and regimes in the central Mediterranean varied independently of the monsoon system. Specifically, events of extreme summer precipitation were promoted by increased regional insolation rates and/or extratropical cyclones, and their magnitude was further enhanced by the advection of cool and humid North Atlantic air during stadials. Our findings provide new information on the short- to mid-term natural hydroclimatic variability of the Mediterranean basin, and offer new critical insights on land-ocean interactions at the regional scale by complementing previous analyses on the displacement of storm tracks toward southern Europe.

Hydroclimate variability in the central Mediterranean during MIS 17 interglacial (Middle Pleistocene) highlights timing offset with monsoon activity

Capraro, Luca
Writing – Original Draft Preparation
;
Fornaciari, Eliana
Investigation
;
2023

Abstract

Mediterranean climates are characterized by warm, dry summers and mild, rainy winters. Previous studies suggest that over the last 1.36 Myr, Mediterranean winter rainfalls were in phase with the African monsoon. Here we present a high-resolution terrestrial and marine dataset for the Marine Isotope Stage 17 interglacial (Middle Pleistocene) from Southern Italy, showing that precipitation rates and regimes in the central Mediterranean varied independently of the monsoon system. Specifically, events of extreme summer precipitation were promoted by increased regional insolation rates and/or extratropical cyclones, and their magnitude was further enhanced by the advection of cool and humid North Atlantic air during stadials. Our findings provide new information on the short- to mid-term natural hydroclimatic variability of the Mediterranean basin, and offer new critical insights on land-ocean interactions at the regional scale by complementing previous analyses on the displacement of storm tracks toward southern Europe.
2023
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3506368
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact