Organic halides play a key role as building blocks in synthesis because of their low cost and wide availability. In recent years, halogen-atom transfer (XAT) has emerged as a reliable approach to exploit these substrates in radical processes. Herein, we report a hydroalkylation of electron-poor olefins using alkyl bromides based on a UVA-induced silane-mediated XAT reaction. Our protocol is operationally simple, displays a broad scope and does not require a photocatalyst. Flow technology was used to reduce the reaction times and scale the process. Notably, a two-step protocol, combining the XAT protocol with a subsequent Horner-Wadsworth-Emmons reaction, has been developed to enable the allylation of C(sp3)–Br bonds.

Flow photochemical Giese reaction via silane-mediated activation of alkyl bromides

Mazzarella D.;
2023

Abstract

Organic halides play a key role as building blocks in synthesis because of their low cost and wide availability. In recent years, halogen-atom transfer (XAT) has emerged as a reliable approach to exploit these substrates in radical processes. Herein, we report a hydroalkylation of electron-poor olefins using alkyl bromides based on a UVA-induced silane-mediated XAT reaction. Our protocol is operationally simple, displays a broad scope and does not require a photocatalyst. Flow technology was used to reduce the reaction times and scale the process. Notably, a two-step protocol, combining the XAT protocol with a subsequent Horner-Wadsworth-Emmons reaction, has been developed to enable the allylation of C(sp3)–Br bonds.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3507005
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact