The rapid growth of the penetration level of renewable energy sources in low-voltage (LV) networks increases the research interest in more efficient, compact, reliable, and easily expandable energy conversion devices. Thus, multilevel converters, a promising concept for dc-ac conversion, are gaining increased interest due to their smaller size relative to the conventional two-level structure. However, several issues related to the number of components and the added complexity cannot be ignored. To enrich the literature review concerning this topic, this work reviews and provides a comparative assessment of three state-of-the-art multilevel topologies for LV applications. This review considered three structures: state-of-the-art five-level modified MMC (5L-M-MMC), five-level flying capacitor using two three-level flying capacitor converters connected in parallel (2x3L-FC), and five-level flying capacitor (5L-FC). This comparative study is supported by simulation results based on a 10 kW system.

Three-Phase Multilevel Inverters for LV Systems: Comparison of Modular Multilevel Converter and Flying Capacitor Structures

Younis T.;Mattavelli P.
2023

Abstract

The rapid growth of the penetration level of renewable energy sources in low-voltage (LV) networks increases the research interest in more efficient, compact, reliable, and easily expandable energy conversion devices. Thus, multilevel converters, a promising concept for dc-ac conversion, are gaining increased interest due to their smaller size relative to the conventional two-level structure. However, several issues related to the number of components and the added complexity cannot be ignored. To enrich the literature review concerning this topic, this work reviews and provides a comparative assessment of three state-of-the-art multilevel topologies for LV applications. This review considered three structures: state-of-the-art five-level modified MMC (5L-M-MMC), five-level flying capacitor using two three-level flying capacitor converters connected in parallel (2x3L-FC), and five-level flying capacitor (5L-FC). This comparative study is supported by simulation results based on a 10 kW system.
2023
IEEE Conference on Power Electronics and Renewable Energy, CPERE 2023
978-1-6654-5233-5
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3507319
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact