We present the characterization of an inner mini-Neptune in a 9.2292005 ± 0.0000063 d orbit and an outer mono-transiting sub-Saturn planet in a 95.50 d orbit around the moderately active, bright (mv = 8.9 mag) K5V star TOI-2134. Based on our analysis of five sectors of TESS data, we determine the radii of TOI-2134b and c to be 2.69 ± 0.16 RO for the inner planet and 7.27 ± 0.42 RO for the outer one. We acquired 111 radial-velocity (RV) spectra with HARPS-N and 108 RV spectra with SOPHIE. After careful periodogram analysis, we derive masses for both planets via Gaussian Process regression: 9.13 MO for TOI-2134b and 41.89 MO for TOI-2134c. We analysed the photometric and RV data first separately, then jointly. The inner planet is a mini-Neptune with density consistent with either a water-world or a rocky core planet with a low-mass H/He envelope. The outer planet has a bulk density similar to Saturn's. The outer planet is derived to have a significant eccentricity of 0.67 from a combination of photometry and RVs. We compute the irradiation of TOI-2134c as 1.45 ± 0.10 times the bolometric flux received by Earth, positioning it for part of its orbit in the habitable zone of its system. We recommend further RV observations to fully constrain the orbit of TOI-2134c. With an expected Rossiter-McLaughlin (RM) effect amplitude of 7.2 ± 1.3, we recommend TOI-2134c for follow-up RM analysis to study the spin-orbit architecture of the system. We calculate the Transmission Spectroscopy Metric, and both planets are suitable for bright-mode Near Infrared Camera (NIRCam) atmospheric characterization.

A hot mini-Neptune and a temperate, highly eccentric sub-Saturn around the bright K-dwarf TOI-2134

Malavolta, L;
2024

Abstract

We present the characterization of an inner mini-Neptune in a 9.2292005 ± 0.0000063 d orbit and an outer mono-transiting sub-Saturn planet in a 95.50 d orbit around the moderately active, bright (mv = 8.9 mag) K5V star TOI-2134. Based on our analysis of five sectors of TESS data, we determine the radii of TOI-2134b and c to be 2.69 ± 0.16 RO for the inner planet and 7.27 ± 0.42 RO for the outer one. We acquired 111 radial-velocity (RV) spectra with HARPS-N and 108 RV spectra with SOPHIE. After careful periodogram analysis, we derive masses for both planets via Gaussian Process regression: 9.13 MO for TOI-2134b and 41.89 MO for TOI-2134c. We analysed the photometric and RV data first separately, then jointly. The inner planet is a mini-Neptune with density consistent with either a water-world or a rocky core planet with a low-mass H/He envelope. The outer planet has a bulk density similar to Saturn's. The outer planet is derived to have a significant eccentricity of 0.67 from a combination of photometry and RVs. We compute the irradiation of TOI-2134c as 1.45 ± 0.10 times the bolometric flux received by Earth, positioning it for part of its orbit in the habitable zone of its system. We recommend further RV observations to fully constrain the orbit of TOI-2134c. With an expected Rossiter-McLaughlin (RM) effect amplitude of 7.2 ± 1.3, we recommend TOI-2134c for follow-up RM analysis to study the spin-orbit architecture of the system. We calculate the Transmission Spectroscopy Metric, and both planets are suitable for bright-mode Near Infrared Camera (NIRCam) atmospheric characterization.
File in questo prodotto:
File Dimensione Formato  
stad3255.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 3.62 MB
Formato Adobe PDF
3.62 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3507394
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact