Materials based on graphitic carbon nitride (gCN) have drawn a great deal of attention as (photo)electrocatalysts triggering the oxygen evolution reaction (OER) in H2O splitting processes to yield hydrogen fuel. In this work, nonmonochromatized Mg K alpha radiation (1253.6 eV) was used to acquire photoelectron spectroscopy data on gCN-containing composite systems supported on fluorine-doped tin oxide. The investigated materials were prepared via a straightforward decantation route to yield carbon nitride, followed by functionalization with low amounts of nanostructured co-catalysts (CoO, CoFe2O4) through radio frequency-sputtering, and final thermal treatment under an inert atmosphere. Structural and morphological analyses highlighted the formation of composite systems, in which the single constituents, featuring an intimate contact, maintained their chemical identity. This work proposes a data record including both survey scans and high-resolution spectra of C 1s, N 1s, O 1s, Co 2p, and Fe 2p core-levels for three representative specimens comprising bare and functionalized graphitic carbon nitride (gCN, gCN-CoO, and gCN-CoFe2O4). The obtained results, discussed in relation to the different chemical environments for the various elements, will be useful as a comparison for further studies in related fields.

XPS analysis of graphitic carbon nitride functionalized with CoO and CoFe2O4

Benedet, Mattia
;
Rizzi, Gian Andrea;Gasparotto, Alberto;Maccato, Chiara
2023

Abstract

Materials based on graphitic carbon nitride (gCN) have drawn a great deal of attention as (photo)electrocatalysts triggering the oxygen evolution reaction (OER) in H2O splitting processes to yield hydrogen fuel. In this work, nonmonochromatized Mg K alpha radiation (1253.6 eV) was used to acquire photoelectron spectroscopy data on gCN-containing composite systems supported on fluorine-doped tin oxide. The investigated materials were prepared via a straightforward decantation route to yield carbon nitride, followed by functionalization with low amounts of nanostructured co-catalysts (CoO, CoFe2O4) through radio frequency-sputtering, and final thermal treatment under an inert atmosphere. Structural and morphological analyses highlighted the formation of composite systems, in which the single constituents, featuring an intimate contact, maintained their chemical identity. This work proposes a data record including both survey scans and high-resolution spectra of C 1s, N 1s, O 1s, Co 2p, and Fe 2p core-levels for three representative specimens comprising bare and functionalized graphitic carbon nitride (gCN, gCN-CoO, and gCN-CoFe2O4). The obtained results, discussed in relation to the different chemical environments for the various elements, will be useful as a comparison for further studies in related fields.
2023
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3507452
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact