A novel series of C(3)-substituted piperdinylindoles were developed as nociceptin opioid receptor (NOP) partial agonists to explore a pharmacological hypothesis that NOP partial agonists would afford a dual pharmacological action of attenuating Parkinson's disease (PD) motor symptoms and development of levodopa-induced dyskinesias. SAR around the C-3 substituents investigated effects on NOP binding, intrinsic activity, and selectivity and showed that while the C(3)-substituted indoles are selective, high affinity NOP ligands, the steric, polar, and cationic nature of the C-3 substituents affected intrinsic activity to afford partial agonists with a range of efficacies. Compounds 4, 5, and 9 with agonist efficacies between 25% and 35% significantly attenuated motor deficits in the 6-OHDA-hemilesioned rat model of PD. Further, unlike NOP antagonists, which appear to worsen dyskinesia expression, these NOP partial agonists did not attenuate or worsen dyskinesia expression. The NOP partial agonists and their SAR reported here may be useful to develop nondopaminergic treatments for PD.

Discovery and Structure-Activity Relationships of Nociceptin Receptor Partial Agonists That Afford Symptom Ablation in Parkinson's Disease Models

Morari M.;
2020

Abstract

A novel series of C(3)-substituted piperdinylindoles were developed as nociceptin opioid receptor (NOP) partial agonists to explore a pharmacological hypothesis that NOP partial agonists would afford a dual pharmacological action of attenuating Parkinson's disease (PD) motor symptoms and development of levodopa-induced dyskinesias. SAR around the C-3 substituents investigated effects on NOP binding, intrinsic activity, and selectivity and showed that while the C(3)-substituted indoles are selective, high affinity NOP ligands, the steric, polar, and cationic nature of the C-3 substituents affected intrinsic activity to afford partial agonists with a range of efficacies. Compounds 4, 5, and 9 with agonist efficacies between 25% and 35% significantly attenuated motor deficits in the 6-OHDA-hemilesioned rat model of PD. Further, unlike NOP antagonists, which appear to worsen dyskinesia expression, these NOP partial agonists did not attenuate or worsen dyskinesia expression. The NOP partial agonists and their SAR reported here may be useful to develop nondopaminergic treatments for PD.
2020
File in questo prodotto:
File Dimensione Formato  
kamakolanu2020.pdf

Accesso riservato

Tipologia: Published (Publisher's Version of Record)
Licenza: Accesso privato - non pubblico
Dimensione 1.92 MB
Formato Adobe PDF
1.92 MB Adobe PDF Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3507677
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
  • OpenAlex ND
social impact