Bistability in the firing rate is a prominent feature in different types of neurons as well as in neural networks. We show that for a constant input below a critical value, such bistability can lead to a giant spike-count diffusion. We study the transmission of a periodic signal and demonstrate that close to the critical bias current, the signal-to-noise ratio suffers a sharp increase, an effect that can be traced back to the giant diffusion and large Fano factor.

Critical current for giant Fano factor in neural models with bistable firing dynamics and implications for signal transmission

Bernardi D.;
2022

Abstract

Bistability in the firing rate is a prominent feature in different types of neurons as well as in neural networks. We show that for a constant input below a critical value, such bistability can lead to a giant spike-count diffusion. We study the transmission of a periodic signal and demonstrate that close to the critical bias current, the signal-to-noise ratio suffers a sharp increase, an effect that can be traced back to the giant diffusion and large Fano factor.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3508071
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
  • OpenAlex ND
social impact