: Fragment-based lead discovery has emerged as one of the most efficient screening strategies for finding hit molecules in drug discovery. Recently, a novel strategy based on a class of fragments characterized by an ultralow molecular weight (ULMW) has been proposed. These fragments bind to the target with a very low affinity, requiring reliable biophysical methods for detection. The most notable application of ULMW used a set of 81 fragments, named MiniFrags, and screened them by X-ray crystallography. We extended the utilization of this novel class of fragments to another gold standard technique for fragment-based screening: nuclear magnetic resonance (NMR). Here, we present a novel NMR protocol to detect and analyze such weak interactions in a challenging real-world scenario: a flexible target with a flat, water-exposed binding site. We identified a subset of 69 highly water-soluble MiniFrags that were screened against the antiapoptotic protein human Bfl-1.

A Novel NMR-Based Protocol to Screen Ultralow Molecular Weight Fragments

Favaro, Annagiulia;Sturlese, Mattia
2024

Abstract

: Fragment-based lead discovery has emerged as one of the most efficient screening strategies for finding hit molecules in drug discovery. Recently, a novel strategy based on a class of fragments characterized by an ultralow molecular weight (ULMW) has been proposed. These fragments bind to the target with a very low affinity, requiring reliable biophysical methods for detection. The most notable application of ULMW used a set of 81 fragments, named MiniFrags, and screened them by X-ray crystallography. We extended the utilization of this novel class of fragments to another gold standard technique for fragment-based screening: nuclear magnetic resonance (NMR). Here, we present a novel NMR protocol to detect and analyze such weak interactions in a challenging real-world scenario: a flexible target with a flat, water-exposed binding site. We identified a subset of 69 highly water-soluble MiniFrags that were screened against the antiapoptotic protein human Bfl-1.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3509916
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact