BACKGROUND Captures of codling moth, Cydia pomonella (L.), in traps are used to establish action thresholds and time insecticide sprays. The need for frequent trap inspections in often remote orchards has created a niche for remote sensing smart traps. A smart trap baited with a five-component pheromone-kairomone blend was evaluated for codling moth monitoring among an assemblage of other nontargets in apple and pear orchards.RESULTS Codling moth captures did not differ between the smart trap and a standard trap when both were checked manually. However, the correlation between automatic and manual counts of codling moth in the smart traps was low, R-2 = 0.66 divided by 0.87. False-negative identifications by the smart trap were infrequent <5%, but false-positive identifications accounted for up to 67% of the count. These errors were primarily due to the misidentification of three moth species of fairly similar-size to codling moth: apple clearwing moth Synanthedon myopaeformis (Borkhausen), oriental fruit moth Grapholita molesta (Busck), and carnation tortrix Cacoecimorpha pronubana (Hubner). Other false-positive counts were less frequent and included the misidentifications of dipterans, other arthropods, patches of moth scales, and the double counting of some moths.CONCLUSION Codling moth was successfully monitored remotely with a smart trap baited with a nonselective sex pheromone-kairomone lure, but automatic counts were inflated in some orchards due to mischaracterizations of primarily similar-sized nontarget moths. Improved image-identification algorithms are needed for smart traps baited with less-selective lures and with lure sets targeting multiple species.

Remote monitoring of Cydia pomonella adults among an assemblage of nontargets in sex pheromone‐kairomone‐baited smart traps

Favaro, Riccardo;
2021

Abstract

BACKGROUND Captures of codling moth, Cydia pomonella (L.), in traps are used to establish action thresholds and time insecticide sprays. The need for frequent trap inspections in often remote orchards has created a niche for remote sensing smart traps. A smart trap baited with a five-component pheromone-kairomone blend was evaluated for codling moth monitoring among an assemblage of other nontargets in apple and pear orchards.RESULTS Codling moth captures did not differ between the smart trap and a standard trap when both were checked manually. However, the correlation between automatic and manual counts of codling moth in the smart traps was low, R-2 = 0.66 divided by 0.87. False-negative identifications by the smart trap were infrequent <5%, but false-positive identifications accounted for up to 67% of the count. These errors were primarily due to the misidentification of three moth species of fairly similar-size to codling moth: apple clearwing moth Synanthedon myopaeformis (Borkhausen), oriental fruit moth Grapholita molesta (Busck), and carnation tortrix Cacoecimorpha pronubana (Hubner). Other false-positive counts were less frequent and included the misidentifications of dipterans, other arthropods, patches of moth scales, and the double counting of some moths.CONCLUSION Codling moth was successfully monitored remotely with a smart trap baited with a nonselective sex pheromone-kairomone lure, but automatic counts were inflated in some orchards due to mischaracterizations of primarily similar-sized nontarget moths. Improved image-identification algorithms are needed for smart traps baited with less-selective lures and with lure sets targeting multiple species.
2021
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3510032
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact