We present an ordinary state-based peridynamic model in 2D and 3D consistent with rate-independent J2 plasticity with associated flow rule. The new contribution is the capability of the elastoplastic law to describe isotropic, kinematic and mixed hardening. The hardening formulations follow those available in the literature for classical elastoplasticity. The comparison between the results obtained with the peridynamic model and those obtained with a commercial FEM software shows that the two approaches are in good agreement. The extent of the plastic regions and von Mises stress computed with the new model for 2D and 3D examples match well those obtained with FEM-based solutions using ANSYS.

Elastoplastic peridynamic formulation for materials with isotropic and kinematic hardening

Pirzadeh, Atefeh
;
Dalla Barba, Federico;Sanavia, Lorenzo;Zaccariotto, Mirco;Galvanetto, Ugo
2024

Abstract

We present an ordinary state-based peridynamic model in 2D and 3D consistent with rate-independent J2 plasticity with associated flow rule. The new contribution is the capability of the elastoplastic law to describe isotropic, kinematic and mixed hardening. The hardening formulations follow those available in the literature for classical elastoplasticity. The comparison between the results obtained with the peridynamic model and those obtained with a commercial FEM software shows that the two approaches are in good agreement. The extent of the plastic regions and von Mises stress computed with the new model for 2D and 3D examples match well those obtained with FEM-based solutions using ANSYS.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3511323
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact