Alluvial aquifers often exhibit highly conductive embedded formations that can act as preferential pathways for the transport of solutes. In this context, a detailed subsurface characterization becomes crucial for an effective monitoring of groundwater quality and early detection of contaminants. However, small-scale heterogeneities are seldom detected by traditional nondestructive investigations. Heat propagation in porous media can be a relatively inexpensive tracer for groundwater flow, potentially offering valuable information in various applications. In this study, we applied passive Fiber Optics Distributed Temperature Sensing (FO-DTS) to a group of observation wells in a highly heterogeneous phreatic aquifer to uncover structures with different hydraulic conductivity, relying on their response to temperature fluctuations triggered by natural and anthropogenic forcings. A comprehensive data analysis approach, combining statistical methods and physics-based numerical modeling, all...
Fiber optics passive monitoring of groundwater temperature reveals three-dimensional structures in heterogeneous aquifers
	
	
	
		
		
		
		
		
	
	
	
	
	
	
	
	
		
		
		
		
		
			
			
			
		
		
		
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
		
		
		
	
Furlanetto D.;Camporese M.
;Schenato L.;Costa L.;Salandin P.
			2024
Abstract
Alluvial aquifers often exhibit highly conductive embedded formations that can act as preferential pathways for the transport of solutes. In this context, a detailed subsurface characterization becomes crucial for an effective monitoring of groundwater quality and early detection of contaminants. However, small-scale heterogeneities are seldom detected by traditional nondestructive investigations. Heat propagation in porous media can be a relatively inexpensive tracer for groundwater flow, potentially offering valuable information in various applications. In this study, we applied passive Fiber Optics Distributed Temperature Sensing (FO-DTS) to a group of observation wells in a highly heterogeneous phreatic aquifer to uncover structures with different hydraulic conductivity, relying on their response to temperature fluctuations triggered by natural and anthropogenic forcings. A comprehensive data analysis approach, combining statistical methods and physics-based numerical modeling, all...| File | Dimensione | Formato | |
|---|---|---|---|
| 
									
										
										
										
										
											
												
												
												    
												
											
										
									
									
										
										
											unpaywall-bitstream--613833530.pdf
										
																				
									
										
											 accesso aperto 
											Tipologia:
											Published (Publisher's Version of Record)
										 
									
									
									
									
										
											Licenza:
											
											
												Creative commons
												
												
													
													
													
												
												
											
										 
									
									
										Dimensione
										3.58 MB
									 
									
										Formato
										Adobe PDF
									 
										
										
								 | 
								3.58 MB | Adobe PDF | Visualizza/Apri | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




