The stabilisation of shallow translational landslides can be carried out by using large diameter concrete piles, with the aim of increasing the available strength along the slip surface. In the following article, 3D numerical models of a free-head flexible pile embedded into a translational type of landslide are studied. The landslide model as a given inclination angle, β, and a thickness, D, while the reinforced concrete pile as a fixed diameter, d, and a length, D + L, in the perspective of studying the failure modes B1, BY and B2 of free-head flexible piles. In this category of piles, collapse is reached with the formation of plastic hinges. Both the soil and the concrete are modelled with simple constitutive models, such as Mohr–Coulomb for soil and the elastic-perfectly plastic for the concrete pile, in order to carry out the design approaches provided by Eurocode, as well as to highlight some practical aspects of soil–structure interaction during the landslide displacements. The results highlight how the achievement of the shear strength in a flexible free-head concrete pile generally precedes the achievement of the ultimate bending moment associated with the development of plastic hinges. Furthermore, the axial load supported by the pile may itself contribute to the overall strength available along the slip surface.

Practical Considerations in the Design of Passive Free Piles in Sliding

P. Carrubba
Methodology
;
2024

Abstract

The stabilisation of shallow translational landslides can be carried out by using large diameter concrete piles, with the aim of increasing the available strength along the slip surface. In the following article, 3D numerical models of a free-head flexible pile embedded into a translational type of landslide are studied. The landslide model as a given inclination angle, β, and a thickness, D, while the reinforced concrete pile as a fixed diameter, d, and a length, D + L, in the perspective of studying the failure modes B1, BY and B2 of free-head flexible piles. In this category of piles, collapse is reached with the formation of plastic hinges. Both the soil and the concrete are modelled with simple constitutive models, such as Mohr–Coulomb for soil and the elastic-perfectly plastic for the concrete pile, in order to carry out the design approaches provided by Eurocode, as well as to highlight some practical aspects of soil–structure interaction during the landslide displacements. The results highlight how the achievement of the shear strength in a flexible free-head concrete pile generally precedes the achievement of the ultimate bending moment associated with the development of plastic hinges. Furthermore, the axial load supported by the pile may itself contribute to the overall strength available along the slip surface.
2024
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3512407
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact